Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, ...
详细信息
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research.
Matroid theory has been developed to be a mature branch of mathematics and has extensive applications in combinatorial optimization,algorithm design and so *** the other hand,quantum computing has attracted much atten...
详细信息
Matroid theory has been developed to be a mature branch of mathematics and has extensive applications in combinatorial optimization,algorithm design and so *** the other hand,quantum computing has attracted much attention and has been shown to surpass classical computing on solving some computational ***,crossover studies of the two fields seem to be missing in the *** paper initiates the study of quantum algorithms for matroid property *** is shown that quadratic quantum speedup is possible for the calculation problem of finding the girth or the number of circuits(bases,flats,hyperplanes)of a matroid,and for the decision problem of deciding whether a matroid is uniform or Eulerian,by giving a uniform lower boundΩ■on the query complexity of all these *** the other hand,for the uniform matroid decision problem,an asymptotically optimal quantum algorithm is proposed which achieves the lower bound,and for the girth problem,an almost optimal quantum algorithm is given with query complexityO■.In addition,for the paving matroid decision problem,a lower boundΩ■on the query complexity is obtained,and an O■ quantum algorithm is presented.
Federated recommender systems(FedRecs) have garnered increasing attention recently, thanks to their privacypreserving benefits. However, the decentralized and open characteristics of current FedRecs present at least t...
详细信息
Federated recommender systems(FedRecs) have garnered increasing attention recently, thanks to their privacypreserving benefits. However, the decentralized and open characteristics of current FedRecs present at least two ***, the performance of FedRecs is compromised due to highly sparse on-device data for each client. Second, the system's robustness is undermined by the vulnerability to model poisoning attacks launched by malicious users. In this paper, we introduce a novel contrastive learning framework designed to fully leverage the client's sparse data through embedding augmentation, referred to as CL4FedRec. Unlike previous contrastive learning approaches in FedRecs that necessitate clients to share their private parameters, our CL4FedRec aligns with the basic FedRec learning protocol, ensuring compatibility with most existing FedRec implementations. We then evaluate the robustness of FedRecs equipped with CL4FedRec by subjecting it to several state-of-the-art model poisoning attacks. Surprisingly, our observations reveal that contrastive learning tends to exacerbate the vulnerability of FedRecs to these attacks. This is attributed to the enhanced embedding uniformity, making the polluted target item embedding easily proximate to popular items. Based on this insight, we propose an enhanced and robust version of CL4FedRec(rCL4FedRec) by introducing a regularizer to maintain the distance among item embeddings with different popularity levels. Extensive experiments conducted on four commonly used recommendation datasets demonstrate that rCL4FedRec significantly enhances both the model's performance and the robustness of FedRecs.
The use of management by objectives (MBOs) methodologies, particularly the objectives and key results (OKRs) framework, has gained widespread attention in recent years as a means of improving organizational performanc...
详细信息
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar...
详细信息
Solar flares are one of the strongest outbursts of solar activity,posing a serious threat to Earth’s critical infrastructure,such as communications,navigation,power,and ***,it is essential to accurately predict solar flares in order to ensure the safety of human ***,the research focuses on two directions:first,identifying predictors with more physical information and higher prediction accuracy,and second,building flare prediction models that can effectively handle complex observational *** terms of flare observability and predictability,this paper analyses multiple dimensions of solar flare observability and evaluates the potential of observational parameters in *** flare prediction models,the paper focuses on data-driven models and physical models,with an emphasis on the advantages of deep learning techniques in dealing with complex and high-dimensional *** reviewing existing traditional machine learning,deep learning,and fusion methods,the key roles of these techniques in improving prediction accuracy and efficiency are *** prevailing challenges,this study discusses the main challenges currently faced in solar flare prediction,such as the complexity of flare samples,the multimodality of observational data,and the interpretability of *** conclusion summarizes these findings and proposes future research directions and potential technology advancement.
The current large-scale Internet of Things(IoT)networks typically generate high-velocity network traffic *** use IoT devices to create botnets and launch attacks,such as DDoS,Spamming,Cryptocurrency mining,Phishing,**...
详细信息
The current large-scale Internet of Things(IoT)networks typically generate high-velocity network traffic *** use IoT devices to create botnets and launch attacks,such as DDoS,Spamming,Cryptocurrency mining,Phishing,*** service providers of large-scale IoT networks need to set up a data pipeline to collect the vast network traffic data from the IoT devices,store it,analyze it,and report the malicious IoT devices and types of ***,the attacks originating from IoT devices are dynamic,as attackers launch one kind of attack at one time and another kind of attack at another *** number of attacks and benign instances also vary from time to *** phenomenon of change in attack patterns is called concept ***,the attack detection system must learn continuously from the ever-changing real-time attack patterns in large-scale IoT network *** meet this requirement,in this work,we propose a data pipeline with Apache Kafka,Apache Spark structured streaming,and MongoDB that can adapt to the ever-changing attack patterns in real time and classify attacks in large-scale IoT *** concept drift is detected,the proposed system retrains the classifier with the instances that cause the drift and a representative subsample instances from the previous training of the *** proposed approach is evaluated with the latest dataset,IoT23,which consists of benign and several attack instances from various IoT *** classification accuracy is improved from 97.8%to 99.46%by the proposed *** training time of distributed random forest algorithm is also studied by varying the number of cores in Apache Spark environment.
Complex networks are becoming more complex because of the use of many components with diverse technologies. In fact, manual configuration that makes each component interoperable has breed latent danger to system secur...
详细信息
Complex networks are becoming more complex because of the use of many components with diverse technologies. In fact, manual configuration that makes each component interoperable has breed latent danger to system security. There is still no comprehensive review of these studies and prospects for further research. According to the complexity of component configuration and difficulty of security assurance in typical complex networks, this paper systematically reviews the abstract models and formal analysis methods required for intelligent configuration of complex networks, specifically analyzes, and compares the current key technologies such as configuration semantic awareness, automatic generation of security configuration, dynamic deployment, and verification evaluation. These technologies can effectively improve the security of complex networks intelligent configuration and reduce the complexity of operation and maintenance. This paper also summarizes the mainstream construction methods of complex networks configuration and its security test environment and detection index system, which lays a theoretical foundation for the formation of the comprehensive effectiveness verification capability of configuration security. The whole lifecycle management system of configuration security process proposed in this paper provides an important technical reference for reducing the complexity of network operation and maintenance and improving network security.
As a result of its aggressive nature and late identification at advanced stages, lung cancer is one of the leading causes of cancer-related deaths. Lung cancer early diagnosis is a serious and difficult challenge that...
详细信息
Music genre classification is one of the most interesting topics in digital music. Classifying genres is basically subjective, and different listeners may perceive genres in various ways. Furthermore, it might be diff...
详细信息
Partition testing is one of the most fundamental and popularly used software testing *** first di-vides the input domain of the program under test into a set of disjoint partitions,and then creates test cases based on...
详细信息
Partition testing is one of the most fundamental and popularly used software testing *** first di-vides the input domain of the program under test into a set of disjoint partitions,and then creates test cases based on these *** by the theory of software cybernetics,some strategies have been proposed to dynamically se-lect partitions based on the feedback information gained during *** basic intuition of these strategies is to assign higher probabilities to those partitions with higher fault-detection potentials,which are judged and updated mainly ac-cording to the previous test *** a feedback-driven mechanism can be considered as a learning process—it makes decisions based on the observations acquired in the test ***,advanced learning techniques could be leveraged to empower the smart partition selection,with the purpose of further improving the effectiveness and efficiency of partition *** this paper,we particularly leverage reinforcement learning to enhance the state-of-the-art adaptive partition testing *** algorithms,namely RLAPT_Q and RLAPT_S,have been developed to implement the proposed *** studies have been conducted to evaluate the performance of the proposed approach based on seven object programs with 26 *** experimental results show that our approach outperforms the existing partition testing techniques in terms of the fault-detection capability as well as the overall testing *** study demonstrates the applicability and effectiveness of reinforcement learning in advancing the performance of software testing.
暂无评论