Temporal knowledge graph(TKG) reasoning, has seen widespread use for modeling real-world events, particularly in extrapolation settings. Nevertheless, most previous studies are embedded models, which require both enti...
详细信息
Temporal knowledge graph(TKG) reasoning, has seen widespread use for modeling real-world events, particularly in extrapolation settings. Nevertheless, most previous studies are embedded models, which require both entity and relation embedding to make predictions, ignoring the semantic correlations among different entities and relations within the same timestamp. This can lead to random and nonsensical predictions when unseen entities or relations occur. Furthermore, many existing models exhibit limitations in handling highly correlated historical facts with extensive temporal depth. They often either overlook such facts or overly accentuate the relationships between recurring past occurrences and their current counterparts. Due to the dynamic nature of TKG, effectively capturing the evolving semantics between different timestamps can be *** address these shortcomings, we propose the recurrent semantic evidenceaware graph neural network(RE-SEGNN), a novel graph neural network that can learn the semantics of entities and relations simultaneously. For the former challenge, our model can predict a possible answer to missing quadruples based on semantics when facing unseen entities or relations. For the latter problem, based on an obvious established force, both the recency and frequency of semantic history tend to confer a higher reference value for the current. We use the Hawkes process to compute the semantic trend, which allows the semantics of recent facts to gain more attention than those of distant facts. Experimental results show that RE-SEGNN outperforms all SOTA models in entity prediction on 6 widely used datasets, and 5 datasets in relation prediction. Furthermore, the case study shows how our model can deal with unseen entities and relations.
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec...
详细信息
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future *** this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users.
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received c...
详细信息
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received considerable attention in transmitting data and ensuring data confidentiality among cloud servers and users. Various traditional image retrieval techniques regarding security have developed in recent years but they do not apply to large-scale environments. This paper introduces a new approach called Triple network-based adaptive grey wolf (TN-AGW) to address these challenges. The TN-AGW framework combines the adaptability of the Grey Wolf Optimization (GWO) algorithm with the resilience of Triple Network (TN) to enhance image retrieval in cloud servers while maintaining robust security measures. By using adaptive mechanisms, TN-AGW dynamically adjusts its parameters to improve the efficiency of image retrieval processes, reducing latency and utilization of resources. However, the image retrieval process is efficiently performed by a triple network and the parameters employed in the network are optimized by Adaptive Grey Wolf (AGW) optimization. Imputation of missing values, Min–Max normalization, and Z-score standardization processes are used to preprocess the images. The image extraction process is undertaken by a modified convolutional neural network (MCNN) approach. Moreover, input images are taken from datasets such as the Landsat 8 dataset and the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset is employed for image retrieval. Further, the performance such as accuracy, precision, recall, specificity, F1-score, and false alarm rate (FAR) is evaluated, the value of accuracy reaches 98.1%, the precision of 97.2%, recall of 96.1%, and specificity of 917.2% respectively. Also, the convergence speed is enhanced in this TN-AGW approach. Therefore, the proposed TN-AGW approach achieves greater efficiency in image retrieving than other existing
Direct volume rendering(DVR)is a technique that emphasizes structures of interest(SOIs)within a volume visually,while simultaneously depicting adjacent regional information,e.g.,the spatial location of a structure con...
详细信息
Direct volume rendering(DVR)is a technique that emphasizes structures of interest(SOIs)within a volume visually,while simultaneously depicting adjacent regional information,e.g.,the spatial location of a structure concerning its *** DVR,transfer function(TF)plays a key role by enabling accurate identification of SOIs interactively as well as ensuring appropriate visibility of *** generation typically involves non-intuitive trial-and-error optimization of rendering parameters,which is time-consuming and *** at mitigating this manual process have led to approaches that make use of a knowledge database consisting of pre-designed TFs by domain *** these approaches,a user navigates the knowledge database to find the most suitable pre-designed TF for their input volume to visualize the *** these approaches potentially reduce the workload to generate the TFs,they,however,require manual TF navigation of the knowledge database,as well as the likely fine tuning of the selected TF to suit the *** this work,we propose a TF design approach,CBR-TF,where we introduce a new content-based retrieval(CBR)method to automatically navigate the knowledge *** of pre-designed TFs,our knowledge database contains volumes with SOI *** an input volume,our CBR-TF approach retrieves relevant volumes(with SOI labels)from the knowledge database;the retrieved labels are then used to generate and optimize TFs of the *** approach largely reduces manual TF navigation and fine *** our CBR-TF approach,we introduce a novel volumetric image feature which includes both a local primitive intensity profile along the SOIs and regional spatial semantics available from the co-planar images to the *** the regional spatial semantics,we adopt a convolutional neural network to obtain high-level image feature *** the intensity profile,we extend the dynamic time warping technique to address subtle alignment
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights o...
详细信息
We present a novel attention-based mechanism to learn enhanced point features for point cloud processing tasks, e.g., classification and segmentation. Unlike prior studies, which were trained to optimize the weights of a pre-selected set of attention points, our approach learns to locate the best attention points to maximize the performance of a specific task, e.g., point cloud classification. Importantly, we advocate the use of single attention point to facilitate semantic understanding in point feature learning. Specifically,we formulate a new and simple convolution, which combines convolutional features from an input point and its corresponding learned attention point(LAP). Our attention mechanism can be easily incorporated into state-of-the-art point cloud classification and segmentation networks. Extensive experiments on common benchmarks, such as Model Net40, Shape Net Part, and S3DIS, all demonstrate that our LAP-enabled networks consistently outperform the respective original networks, as well as other competitive alternatives, which employ multiple attention points, either pre-selected or learned under our LAP framework.
The heart, an essential organ of the body, pumps blood filled with oxygen to every area of the body through a complex network of veins and arteries. Any condition affecting the heart is referred to as heart disease. I...
详细信息
Mobile devices face SQL injection, malware, and web-based threats. Current solutions lack real-time detection. This paper introduces an Android app with advanced algorithms for real-time threat scanning. During testin...
详细信息
To achieve intelligent lighting with multiple targets on a large scale and improve the energy utilization rate of the system, we design an intelligent lighting control system based on the fiber optic Internet of Thing...
详细信息
In recent years,the rapid development of Internet technology has constantly enriched people's daily life and gradually changed from the traditional computer terminal to the mobile *** with it comes the security pr...
详细信息
In recent years,the rapid development of Internet technology has constantly enriched people's daily life and gradually changed from the traditional computer terminal to the mobile *** with it comes the security problems brought by the mobile *** for Android system,due to its open source nature,malicious applications continue to emerge,which greatly threatens the data security of ***,this paper proposes a method of trusted embedded static measurement and data transmission protection architecture based on Android to reduce the risk of data leakage in the process of terminal storage and *** conducted detailed data and feasibility analysis of the proposed method from the aspects of time consumption,storage overhead and *** experimental results show that this method can detect Android system layer attacks such as self-booting of the malicious module and improve the security of data encryption and transmission process *** with the native system,the additional performance overhead is small.
Edge learning (EL) is an end-to-edge collaborative learning paradigm enabling devices to participate in model training and data analysis, opening countless opportunities for edge intelligence. As a promising EL framew...
详细信息
暂无评论