咨询与建议

限定检索结果

文献类型

  • 2,120 篇 期刊文献
  • 1,734 篇 会议
  • 17 册 图书

馆藏范围

  • 3,871 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,535 篇 工学
    • 1,877 篇 计算机科学与技术...
    • 1,582 篇 软件工程
    • 611 篇 信息与通信工程
    • 387 篇 电气工程
    • 382 篇 生物工程
    • 314 篇 控制科学与工程
    • 242 篇 电子科学与技术(可...
    • 241 篇 生物医学工程(可授...
    • 233 篇 光学工程
    • 151 篇 机械工程
    • 122 篇 化学工程与技术
    • 119 篇 交通运输工程
    • 103 篇 动力工程及工程热...
    • 103 篇 网络空间安全
    • 96 篇 仪器科学与技术
    • 89 篇 安全科学与工程
  • 1,400 篇 理学
    • 720 篇 数学
    • 430 篇 生物学
    • 345 篇 物理学
    • 251 篇 统计学(可授理学、...
    • 134 篇 化学
    • 134 篇 系统科学
  • 735 篇 管理学
    • 461 篇 管理科学与工程(可...
    • 316 篇 图书情报与档案管...
    • 222 篇 工商管理
  • 253 篇 医学
    • 216 篇 临床医学
    • 190 篇 基础医学(可授医学...
    • 119 篇 公共卫生与预防医...
    • 106 篇 药学(可授医学、理...
  • 118 篇 法学
    • 99 篇 社会学
  • 75 篇 经济学
  • 50 篇 农学
  • 37 篇 教育学
  • 8 篇 文学
  • 5 篇 军事学
  • 2 篇 艺术学

主题

  • 125 篇 deep learning
  • 123 篇 accuracy
  • 106 篇 machine learning
  • 101 篇 feature extracti...
  • 92 篇 semantics
  • 92 篇 training
  • 90 篇 computational mo...
  • 76 篇 data models
  • 69 篇 real-time system...
  • 68 篇 internet of thin...
  • 67 篇 predictive model...
  • 61 篇 convolutional ne...
  • 54 篇 reinforcement le...
  • 54 篇 federated learni...
  • 49 篇 graph neural net...
  • 45 篇 deep neural netw...
  • 44 篇 data mining
  • 44 篇 artificial intel...
  • 42 篇 optimization
  • 38 篇 convolution

机构

  • 156 篇 college of compu...
  • 101 篇 beijing advanced...
  • 100 篇 national enginee...
  • 71 篇 nanyang technolo...
  • 67 篇 school of comput...
  • 57 篇 national enginee...
  • 50 篇 school of comput...
  • 47 篇 school of big da...
  • 44 篇 school of comput...
  • 43 篇 school of cyber ...
  • 36 篇 national enginee...
  • 33 篇 college of intel...
  • 33 篇 university of ch...
  • 32 篇 school of comput...
  • 30 篇 school of comput...
  • 30 篇 school of data a...
  • 30 篇 hubei engineerin...
  • 29 篇 college of compu...
  • 29 篇 services computi...
  • 29 篇 the college of c...

作者

  • 149 篇 niyato dusit
  • 105 篇 hai jin
  • 99 篇 jin hai
  • 31 篇 xiaofei liao
  • 31 篇 kang jiawen
  • 26 篇 shen linlin
  • 25 篇 li jianxin
  • 24 篇 rajeswari d.
  • 23 篇 hu shengshan
  • 23 篇 xiong zehui
  • 22 篇 peng hao
  • 22 篇 tao dacheng
  • 20 篇 sun geng
  • 19 篇 li tianrui
  • 19 篇 haikun liu
  • 19 篇 xiwang dong
  • 19 篇 wang jiacheng
  • 19 篇 du hongyang
  • 18 篇 dusit niyato
  • 18 篇 xiaofei wang

语言

  • 3,513 篇 英文
  • 333 篇 其他
  • 33 篇 中文
检索条件"机构=School of Computing and Data Engineering"
3871 条 记 录,以下是3611-3620 订阅
排序:
Low-resolution face recognition in the wild via selective knowledge distillation
arXiv
收藏 引用
arXiv 2018年
作者: Ge, Shiming Zhao, Shengwei Li, Chenyu Li, Jia Institute of Information Engineering Chinese Academy of Sciences Beijing100095 China Institute of Information Engineering Chinese Academy of Sciences School of Cyber Security at University of Chinese Academy of Sciences China State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China
Typically, the deployment of face recognition models in the wild needs to identify low-resolution faces with extremely low computational cost. To address this problem, a feasible solution is compressing a complex face... 详细信息
来源: 评论
Special Issue on Innovative informatics methods for process mining in health care
收藏 引用
Journal of Biomedical Informatics 2020年 109卷
作者: Jorge Munoz-Gama Niels Martin Carlos Fernandez-Llatas Owen Johnson Marcos Sepúlveda Human & Process Research Lab School of Engineering Pontificia Universidad Católica de Chile Santiago Chile Research Group Business Informatics Hasselt University Hasselt Belgium Data Analytics Laboratory Vrije Universiteit Brussel Brussels Belgium ITACA Institute – Process Mining 4 Health Lab Universitat Politècnica de Valencia Valencia Spain Department of Clinical Sciences Intervention and Technology (CLINTEC) Karolinska Institutet Stockholm Sweden School of Computing Leeds University Leeds United Kingdom
来源: 评论
Inland port location planning based on user equilibrium  17
Inland port location planning based on user equilibrium
收藏 引用
17th COTA International Conference of Transportation Professionals: Transportation Reform and Change - Equity, Inclusiveness, Sharing, and Innovation, CICTP 2017
作者: Wei, Jingyi Tian, Daxin Rong, Hui Guo, Peng Wang, Wenyang Gong, Jinfeng Wang, Yunpeng Liu, He Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang Univ. Beijing100191 China Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control School of Transportation Science and Engineering Beihang Univ. Beijing100191 China Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies Nanjing210096 China Automotive Engineering Research Institute China Automotive Technology and Research Center Tianjin300300 China Quartermaster Equipment Institute of the General Logistics Dept. Of CPLA Beijing100010 China
With stable development of container transportation in shipping industry, the transit shipment from road to railway of inland ports plays a significant role in multimodal transport. This paper presents the method of i... 详细信息
来源: 评论
data Harmonisation for Information Fusion in Digital Healthcare: A State-of-the-Art Systematic Review, Meta-Analysis and Future Research Directions
arXiv
收藏 引用
arXiv 2022年
作者: Nan, Yang Del Ser, Javier Walsh, Simon Schönlieb, Carola Roberts, Michael Selby, Ian Howard, Kit Owen, John Neville, Jon Guiot, Julien Ernst, Benoit Pastor, Ana Alberich-Bayarri, Angel Menzel, Marion I. Walsh, Sean Vos, Wim Flerin, Nina Charbonnier, Jean-Paul van Rikxoort, Eva Chatterjee, Avishek Woodruff, Henry Lambin, Philippe Cerdá-Alberich, Leonor Martí-Bonmatí, Luis Herrera, Francisco Yang, Guang Xing, Xiaodan Li, Ming Wagers, Scott Baker, Rebecca Nardi, Cosimo van Eeckhout, Brice Skipp, Paul Powell, Pippa Carroll, Miles Ruggiero, Alessandro Thillai, Muhunthan Babar, Judith Sala, Evis Murch, William Hiscox, Julian Baralle, Diana Sverzellati, Nicola Blanco, Ana Miguel Bataller, Fuensanta Bellvís Aznar, Mario Suarez, Amelia Figueiras, Sergio Krischak, Katharina Hierath, Monika Mirsky, Yisroel Elovici, Yuval Beregi, Jean Paul Fournier, Laure Sardanelli, Francesco Penzkofer, Tobias Seymour, Karine Blanquer, Nacho Neri, Emanuele Laghi, Andrea França, Manuela Martinez, Ricard National Heart and Lung Institute Imperial College London London United Kingdom Cardiovascular Research Centre Royal Brompton Hospital London United Kingdom School of Biomedical Engineering & Imaging Sciences King's College London London United Kingdom Department of Communications Engineering University of the Basque Country UPV/EHU Bilbao48013 Spain Derio48160 Spain Department of Applied Mathematics and Theoretical Physics University of Cambridge Cambridge United Kingdom Oncology R&D AstraZeneca Cambridge United Kingdom Department of Radiology University of Cambridge Cambridge United Kingdom Clinical Data Interchange Standards Consortium AustinTX United States Respiratory medicine department Liège Belgium University of Liege Department of Clinical Sciences Pneumology-Allergology Liège Belgium QUIBIM Valencia Spain Technische Hochschule Ingolstadt Ingolstadt Germany GE Healthcare GmbH Munich Germany Liège Belgium Thirona Nijmegen Netherlands Department of Precision Medicine Maastricht University Maastricht Netherlands Medical Imaging Department Hospital Universitari i Politècnic La Fe Valencia Spain University of Granada Granada Spain Faculty of Computing and Information Technology King Abdulaziz University Jeddah21589 Saudi Arabia National Heart and Lung Institute Imperial College London London United Kingdom BioSci Consulting Maasmechelen Belgium Clinical Data Interchange Standards Consortium AustinTX United States University of Florence Firenze Italy Medical Cloud Company Liège Belgium TopMD Southampton United Kingdom European Lung Foundation Sheffield United Kingdom Department of Health Public Health England London United Kingdom Department of Radiology University of Cambridge Cambridge United Kingdom Owlstone Medical Cambridge United Kingdom University of Liverpool Liverpool United Kingdom University of Southampton Southampton United Kingdom University of Parma Parma Italy Medical Imaging Department Hospital Universi
Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by diffe... 详细信息
来源: 评论
τ-FPL: Tolerance-constrained learning in linear time
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Ao Li, Nan Pu, Jian Wang, Jun Yan, Junchi Zha, Hongyuan School of Computer Science and Software Engineering East China Normal University Shanghai China Institute of Data Science and Technologies Alibaba Group Hangzhou China IBM Research - China Shanghai China College of Computing Georgia Institute of Technology AtlantaGA United States
Learning a classifier with control on the false-positive rate plays a critical role in many machine learning applications. Existing approaches either introduce prior knowledge dependent label cost or tune parameters b... 详细信息
来源: 评论
First principles calculations of superconducting critical temperature of ThCr2Si2-type structure
arXiv
收藏 引用
arXiv 2019年
作者: Sinaga, Gewinner Senderanto Utimula, Keishu Nakano, Kousuke Hongo, Kenta Maezono, Ryo School of Materials Science JAIST Asahidai 1-1 Nomi Ishikawa923-1292 Japan Research Center for Advanced Computing Infrastructure JAIST Asahidai 1-1 Nomi Ishikawa923-1292 Japan Center for Materials Research by Information Integration Research and Services Division of Materials Data and Integrated System National Institute for Materials Science Tsukuba305-0047 Japan Computational Engineering Applications Unit RIKEN 2-1 Hirosawa Wako Saitama351-0198 Japan PRESTO JST Kawaguchi Saitama332-0012 Japan School of Information Science JAIST Asahidai 1-1 Nomi Ishikawa923-1292 Japan Computational Engineering Applications Unit RIKEN 2-1 Hirosawa Wako Saitama351-0198 Japan
High critical temperature (Tc) superconductor has a great potential in many industrial applications. However, discovering a compound having high Tc is still remaining a big challenge for experimental approach due to t... 详细信息
来源: 评论
Preface
ICMLCA 2021 - 2nd International Conference on Machine Learni...
收藏 引用
ICMLCA 2021 - 2nd International Conference on Machine Learning and Computer Application 2021年 iii页
作者: Ning, Xiansheng Feng, Yongxin Zhang, Wenbo Yue, Mingkai Du, Ke-Lin Huang, Shutao Zhou, Fang Ba, Shuhong Fu, Chong Shui, Penglang Xu, Shuwen Wu, Sheng Wang, Shushan Du, Zhonghua Gao, Zhijun Fan, Chunlong Li, Yufeng Wang, Yupeng Liu, Qingli Yu, Jingang Yin, Zhenyu Zhang, Deyu Gao, Hongwei Wen, Feng Guo, Cean Hao, Yongping Chan, Yung-Kuan Pavlovich, Vinogradov Gennady Kirpichnikova, Irina Qian, Zhihong Ivanov, Dmitriy V. Zhou, Xueguan Nezamabadi-Pour, Hossein Yang, Qing Zhang, Yongtang Liao, Haibin Huang, Ying Srinivasan, Kathiravan Xu, Zhenghua Pachori, Ram Bilas Zhang, Jialu AlShawabkeh, Mahmoud Guo, Chengjun Chaugule, Archana Ajit Lima, Alberto Sampaio Liu, Huayong Vidal, Jorge Maestre Alrshah, Mohamed A. Ghafoor, Kayhan Zrar Kubicek, Jan Chaugule, Archana Ajit Rodríguez-Pérez, Miguel Kumar, Gulshan Nasri, Mehdi Borrego, Carlos Persico, Valerio Wagh, Sanjeev Yan, Wenjun Yang, Li Yang, Dawei Xing, Yongkang Yang, Huadong Shang, Chengguo Chang, Xingong Shi, Hongbo Li, Aijun Feng, Liping Lv, Yali Liang, Minfu Wang, Kaixuan Bai, Zengliang Liang, Anhui Nan, Zhihong Ji, Suqin Chang, Liwei Zhou, Hongbin Yao, Chunli Cao, Guodong Zhang, Juling School of Information Science and Engineering Shenyang Ligong University China School of Equipment Engineering Shenyang Ligong University China Concordia University Canada School of Automotive and Transportation Shenyang Ligong University China School of Information Science and Engineering Shenyang Ligong University China School of Equipment Engineering Shenyang Ligong University China Northeastern University China Xidian University China Beijing University of Posts and Telecommunications China Beijing Institute of Technology China Nanjing University of Science & Technology China Shenyang Jianzhu University China Shenyang Aerospace University China Dalian University China Shenyang Institute of Computing Technology Chinese Academy of Sciences China Shenyang Ligong University China National Chun Hsing University Taiwan Department of Informatics and Applied Mathematics Russia South Ural State University Russia Jilin University China Samara State University of Transport Russia Naval Universit of Engineering China Shahid Bahonar University of Kermanto Iran Central China Normal University China Guangdong Neusoft Institute China Hubei University of Science and Technology China Liuzhou Railway Vocational Technical College China Vellore Institute of Technology India Hebei University of Technology China Indian Institute of Technology Indore India Xiangnan University China Guangxi Normal University for Nationalities China UESTC China Pimpri-Chinchwad College of Engineering & Research India Federal University of Ceará Brazil Complutense University of Madrid Spain Universiti Putra Malaysia Malaysia Shanghai Jiao Tong University China VŠB - Technical University of Ostrava Cuw Pimpri-Chinchwad College of Engineering & Research Ravet Pune India University of Vigo Spain Division of Research and Development India Islamic Azad University Iran Departament Enginyeria of Information Comunicacions Autonomous University of Barcelona Spain Opportunistic Networks United States Univers
来源: 评论
Forecasting transportation network speed using deep capsule networks with nested LSTM models
arXiv
收藏 引用
arXiv 2018年
作者: Ma, Xiaolei Li, Yi Cui, Zhiyong Wang, Yinhai School of Transportation Science and Engineering Beijing Key Laboratory for Cooperative Vehicle Infrastructure System and Safety Control Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China Department of Civil and Environmental Engineering University of Washington Seattle98195 United States
Accurate and reliable traffic forecasting for complicated transportation networks is of vital importance to modern transportation management. The complicated spatial dependencies of roadway links and the dynamic tempo... 详细信息
来源: 评论
Comparison of UAV-based multispectral sensors for detection of Solenopsis invicta Nests
收藏 引用
IOP Conference Series: Earth and Environmental Science 2020年 第1期569卷
作者: Yuejun Song Feng Chen Kaitao Liao Jiangxi Institute of Soil and Water Conservation Nanchang 330029 China Jiangxi Key Laboratory of Soil Erosion and Prevention Nanchang 330029 China College of Computer and Information Engineering Xiamen University of Technology Xiamen 361024 China Big Data Institute of Digital Natural Disaster Monitoring in Fujian Xiamen University of Technology Xiamen 361024 China Fujian Key Laboratory of Sensing and Computing for Smart Cities School of Informatics Xiamen University Xiamen 361005 China
The invasive red imported fire ant (Solenopsis invicta Buren) (Hymenoptera: Formicidae) has been continuing to expand its range in China, resulting in adverse ecological impacts to where it has invaded. As such, the r...
来源: 评论
Chemically intuited,large-scale screening of MOFs by machine learning techniques
收藏 引用
npj Computational Materials 2017年 第1期3卷 123-129页
作者: Giorgos Borboudakis Taxiarchis Stergiannakos Maria Frysali Emmanuel Klontzas Ioannis Tsamardinos George E.Froudakis Department of Computer Science University of CreteVoutes CampusGR-70013 HeraklionCreteGreece Gnosis Data Analysis PC Palaiokapa 6571305 HeraklionGreece Department of Chemistry University of CreteVoutes CampusGR-70013 HeraklionCreteGreece School of Computing and Engineering University of HuddersfieldQueensgateHuddersfieldHD13DHUK
A novel computational methodology for large-scale screening of MOFs is applied to gas storage with the use of machine learning *** approach is a promising trade-off between the accuracy of ab initio methods and the sp... 详细信息
来源: 评论