With the help of 5G network, edge intelligence (EI) can not only provide distributed, low-latency, and high-reliable intelligent services, but also enable intelligent maintenance and management of smart city. However,...
详细信息
With the help of 5G network, edge intelligence (EI) can not only provide distributed, low-latency, and high-reliable intelligent services, but also enable intelligent maintenance and management of smart city. However, the constantly changing available computing resources of end devices and edge servers cannot continuously guarantee the performance of intelligent inference. In order to guarantee the sustainability of intelligent services in smart city, we propose the Adaptive Model Selection and Partition Mechanism (AMSPM) in 5G smart city where EI provides services, which mainly consists of Adaptive Model Selection (AMS) and Adaptive Model Partition (AMP). In AMSPM, the model selection and partition of deep neural network (DNN) are formulated as an optimization problem. Firstly, we propose a recursive-based algorithm named AMS based on the computing resources of edge devices to derive an appropriate DNN model that satisfies the latency demand of intelligent services. Then, we adaptively partition the selected DNN model according to the computing resources of edge devices. The experimental results demonstrate that, when compared with state-of-the-art model selection and partition mechanisms, AMSPM not only reduces latency but also enhances computing resource utilization.
Knowledge Graphs (KGs) often suffer from incompleteness and this issue motivates the task of Knowledge Graph Completion (KGC). Traditional KGC models mainly concentrate on static KGs with a fixed set of entities and r...
详细信息
Knowledge Graphs (KGs) often suffer from incompleteness and this issue motivates the task of Knowledge Graph Completion (KGC). Traditional KGC models mainly concentrate on static KGs with a fixed set of entities and relations, or dynamic KGs with temporal characteristics, faltering in their generalization to constantly evolving KGs with possible irregular entity drift. Thus, in this paper, we propose a novel link prediction model based on the embedding representation to handle the incompleteness of KGs with entity drift, termed as DCEL. Unlike traditional link prediction, DCEL could generate precise embeddings for drifted entity without imposing any regular temporal characteristic. The drifted entity is added into the KG with its links to the existing entity predicted in an incremental fashion with no requirement to retrain the whole KG for computational efficiency. In terms of DCEL model, it fully takes advantages of unstructured textual description, and is composed of four modules, namely MRC (Machine Reading Comprehension), RCAA (Relation Constraint Attentive Aggregator), RSA (Relation Specific Alignment) and RCEO (Relation Constraint Embedding Optimization). Specifically, the MRC module is first employed to extract short texts from long and redundant descriptions. Then, RCAA is used to aggregate the embeddings of textual description of drifted entity and the pre-trained word embeddings learned from corpus to a single text-based entity embedding while shielding the impact of noise and irrelevant information. After that, RSA is applied to align the text-based entity embedding to graph-based space to obtain the corresponding graph-based entity embedding, and then the learned embeddings are fed into the gate structure to be optimized based on the RCEO to improve the accuracy of representation learning. Finally, the graph-based model TransE is used to perform link prediction for drifted entity. Extensive experiments conducted on benchmark datasets in terms of evaluat
This book constitutes the refereed proceedings of the First International Conference on Health Information Science, held in Beijing, China, in April 2012. The 15 full papers presented together with 1 invited pape...
详细信息
ISBN:
(数字)9783642293610
ISBN:
(纸本)9783642293603
This book constitutes the refereed proceedings of the First International Conference on Health Information Science, held in Beijing, China, in April 2012. The 15 full papers presented together with 1 invited paper and 3 industry/panel statements in this volume were carefully reviewed and selected from 38 submissions. The papers cover all aspects of the health information sciences and the systems that support this health information management and health service delivery. The scope includes 1) medical/health/biomedicine information resources, such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, 2) data management, data mining, and knowledge discovery (in health domain), all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, and 3) development of new architectures and applications for health information systems.
As an important enabler for changing people’s lives, advances in artificial intelligence (AI)-based applications and services are on the rise, despite being hindered by efficiency and latency issues. By focusing on dee...
详细信息
ISBN:
(数字)9789811561863
ISBN:
(纸本)9789811561856;9789811561887
As an important enabler for changing people’s lives, advances in artificial intelligence (AI)-based applications and services are on the rise, despite being hindered by efficiency and latency issues. By focusing on deep learning as the most representative technique of AI, this book provides a comprehensive overview of how AI services are being applied to the network edge near the data sources, and demonstrates how AI and edge computing can be mutually beneficial. To do so, it introduces and discusses: 1) edge intelligence and intelligent edge; and 2) their implementation methods and enabling technologies, namely AI training and inference in the customized edge computing framework. Gathering essential information previously scattered across the communication, networking, and AI areas, the book can help readers to understand the connections between key enabling technologies, e.g. a) AI applications in edge; b) AI inference in edge; c) AI training for edge; d) edge computing for AI; and e)using AI to optimize edge. After identifying these five aspects, which are essential for the fusion of edge computing and AI, it discusses current challenges and outlines future trends in achieving more pervasive and fine-grained intelligence with the aid of edge computing.
When intelligent agents act in a stochastic environment, the principle of maximizing expected rewards is used to optimize their policies. The rationality of the maximum rewards becomes a single objective when agents’...
详细信息
When intelligent agents act in a stochastic environment, the principle of maximizing expected rewards is used to optimize their policies. The rationality of the maximum rewards becomes a single objective when agents’ decision problems are solved in most cases. This sometimes leads to the agents’ behaviors (the optimal policies for solving the decision problems) that are not legible. In other words, it is difficult for users (or other agents and even humans) to understand the agents’ intentions when they are executing the optimal policies. Hence, it becomes pertinent to consider the legibility of agents’ decision problems. The key challenge lies in formulating a proper legibility function in the problems. Using domain experts’ inputs leans to be subjective and inconsistent in specifying legibility values, and the manual approach quickly becomes infeasible in a complex problem domain. In this article, we aim to learn such a legibility function parallel to developing a (conventional) reward function. We adopt inverse reinforcement learning techniques to automate a legibility function in agents’ decision problems. We first demonstrate the effectiveness of the inverse reinforcement learning technique when legibility is solely considered in a decision problem. Things become complicated when both the reward and legibility functions are to be found. We develop a multi-objective inverse reinforcement learning method to automate the two functions in a good balance simultaneously. We vary problem domains in the performance study and provide empirical results in support.
Nowadays, research on session-based recommender systems (SRSs) is one of the hot spots in the recommendation domain. Existing methods make recommendations based on the user’s current intention (also called short-term...
详细信息
Nowadays, research on session-based recommender systems (SRSs) is one of the hot spots in the recommendation domain. Existing methods make recommendations based on the user’s current intention (also called short-term preference) during a session, often overlooking the specific preferences associated with these intentions. In reality, users usually exhibit diverse preferences for different intentions, and even for the same intention, individual preferences can vary significantly between users. As users interact with items throughout a session, their intentions can shift accordingly. To enhance recommendation quality, it is crucial not only to consider the user’s intentions but also to dynamically learn their varying preferences as these intentions change. In this paper, we propose a novel Intention-sensitive Preference Learning Network (IPLN) including three main modules: intention recognizer, preference detector, and prediction layer. Specifically, the intention recognizer infers the user’s underlying intention within his/her current session by analyzing complex relationships among items. Based on the acquired intention, the preference detector learns the intention-specific preference by selectively integrating latent features from items in the user’s historical sessions. Besides, the user’s general preference is utilized to refine the obtained preference to reduce the potential noise carried from historical records. Ultimately, the fine-tuned preference and intention collaborate to instruct the next-item recommendation in the prediction layer. To prove the effectiveness of the proposed IPLN, we perform extensive experiments on two real-world datasets. The experiment results demonstrate the superiority of IPLN compared with other state-of-the-art models.
The advancement of the Internet of Medical Things (IoMT) has led to the emergence of various health and emotion care services, e.g., health monitoring. To cater to increasing computational requirements of IoMT service...
详细信息
The advancement of the Internet of Medical Things (IoMT) has led to the emergence of various health and emotion care services, e.g., health monitoring. To cater to increasing computational requirements of IoMT services, Mobile Edge computing (MEC) has emerged as an indispensable technology in smart health. Benefiting from the cost-effectiveness of deployment, unmanned aerial vehicles (UAVs) equipped with MEC servers in Non-Orthogonal Multiple Access (NOMA) have emerged as a promising solution for providing smart health services in proximity to medical devices (MDs). However, the escalating number of MDs and the limited availability of communication resources of UAVs give rise to a significant increase in transmission latency. Moreover, due to the limited communication range of UAVs, the geographically-distributed MDs lead to workload imbalance of UAVs, which deteriorates the service response delay. To this end, this paper proposes a UAV-enabled Distributed computation Offloading and Power control method with Multi-Agent, named DOPMA, for NOMA-based IoMT environment. Specifically, this paper introduces computation and transmission queue models to analyze the dynamic characteristics of task execution latency and energy consumption. Moreover, a credit assignment scheme-based reward function is designed considering both system-level rewards and rewards tailored to each MD, and an improved multi-agent deep deterministic policy gradient algorithm is developed to derive offloading and power control decisions independently. Extensive simulations demonstrate that the proposed method outperforms existing schemes, achieving \(7.1\%\) reduction in energy consumption and \(16\%\) decrease in average delay.
暂无评论