咨询与建议

限定检索结果

文献类型

  • 3,016 篇 期刊文献
  • 2,646 篇 会议
  • 25 册 图书

馆藏范围

  • 5,687 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,658 篇 工学
    • 2,722 篇 计算机科学与技术...
    • 2,294 篇 软件工程
    • 802 篇 信息与通信工程
    • 523 篇 生物工程
    • 465 篇 电气工程
    • 452 篇 控制科学与工程
    • 356 篇 生物医学工程(可授...
    • 345 篇 光学工程
    • 302 篇 电子科学与技术(可...
    • 198 篇 机械工程
    • 152 篇 化学工程与技术
    • 147 篇 交通运输工程
    • 147 篇 安全科学与工程
    • 139 篇 网络空间安全
    • 126 篇 动力工程及工程热...
    • 119 篇 仪器科学与技术
  • 2,122 篇 理学
    • 1,136 篇 数学
    • 590 篇 生物学
    • 526 篇 物理学
    • 407 篇 统计学(可授理学、...
    • 192 篇 系统科学
    • 177 篇 化学
  • 1,049 篇 管理学
    • 626 篇 管理科学与工程(可...
    • 469 篇 图书情报与档案管...
    • 316 篇 工商管理
  • 366 篇 医学
    • 315 篇 临床医学
    • 268 篇 基础医学(可授医学...
    • 168 篇 公共卫生与预防医...
    • 151 篇 药学(可授医学、理...
  • 194 篇 法学
    • 162 篇 社会学
  • 112 篇 经济学
  • 77 篇 农学
  • 69 篇 教育学
  • 8 篇 文学
  • 6 篇 军事学
  • 6 篇 艺术学
  • 1 篇 历史学

主题

  • 186 篇 deep learning
  • 183 篇 accuracy
  • 150 篇 training
  • 143 篇 machine learning
  • 138 篇 feature extracti...
  • 109 篇 computational mo...
  • 109 篇 semantics
  • 105 篇 data models
  • 100 篇 real-time system...
  • 94 篇 predictive model...
  • 88 篇 convolutional ne...
  • 81 篇 federated learni...
  • 70 篇 graph neural net...
  • 69 篇 reinforcement le...
  • 67 篇 internet of thin...
  • 63 篇 deep neural netw...
  • 62 篇 optimization
  • 60 篇 contrastive lear...
  • 59 篇 image segmentati...
  • 57 篇 adaptation model...

机构

  • 278 篇 college of compu...
  • 117 篇 beijing advanced...
  • 116 篇 school of data a...
  • 101 篇 national enginee...
  • 94 篇 school of comput...
  • 86 篇 nanyang technolo...
  • 73 篇 school of comput...
  • 54 篇 university of ch...
  • 50 篇 school of comput...
  • 50 篇 national enginee...
  • 48 篇 college of intel...
  • 46 篇 peng cheng labor...
  • 44 篇 school of comput...
  • 43 篇 school of comput...
  • 43 篇 institute of dat...
  • 42 篇 key laboratory o...
  • 39 篇 national enginee...
  • 38 篇 school of comput...
  • 34 篇 school of comput...
  • 34 篇 college of compu...

作者

  • 176 篇 niyato dusit
  • 103 篇 hai jin
  • 65 篇 jin hai
  • 44 篇 tao dacheng
  • 41 篇 cheng xueqi
  • 37 篇 zheng wei-shi
  • 30 篇 xiaofei liao
  • 29 篇 guo jiafeng
  • 28 篇 peng hao
  • 26 篇 jin xiaolong
  • 26 篇 shen linlin
  • 25 篇 hu shengshan
  • 24 篇 rajeswari d.
  • 23 篇 sun geng
  • 23 篇 li jianxin
  • 23 篇 kang jiawen
  • 20 篇 yang yang
  • 20 篇 huang qingming
  • 20 篇 dusit niyato
  • 19 篇 cha meeyoung

语言

  • 4,412 篇 英文
  • 1,239 篇 其他
  • 54 篇 中文
检索条件"机构=School of Computing and Data Science"
5687 条 记 录,以下是4681-4690 订阅
排序:
Privacy-Aware Blockchain Innovation for 6G: Challenges and Opportunities
Privacy-Aware Blockchain Innovation for 6G: Challenges and O...
收藏 引用
6G Wireless Summit (6G SUMMIT), 2020 2nd
作者: Tri Nguyen Ngoc Tran Lauri Loven Juha Partala M-Tahar Kechadi Susanna Pirttikangas Center for Ubiquitous Computing University of Oulu Finland Insight Centre for Data Analytics University College Dublin Ireland Center for Machine Vision and Signal Analysis University of Oulu Finland School of Computer Science University College Dublin Ireland
6G wireless networks improve on 5G by further increasing reliability, speeding up the networks and increasing the available bandwidth. These evolutionary enhancements, together with a number of revolutionary improveme...
来源: 评论
Generative Modelling of the Ageing Heart with Cross-Sectional Imaging and Clinical data
arXiv
收藏 引用
arXiv 2022年
作者: Qiao, Mengyun Basaran, Berke Doga Qiu, Huaqi Wang, Shuo Guo, Yi Wang, Yuanyuan Matthews, Paul M. Rueckert, Daniel Bai, Wenjia Department of Computing Imperial College London London United Kingdom Data Science Institute Imperial College London London United Kingdom Department of Brain Sciences Imperial College London London United Kingdom Uk Dementia Research Institute Imperial College London London United Kingdom Klinikum Rechts der Isar Technical University of Munich Munich Germany Department of Electronic Engineering Fudan University Shanghai China Digital Medical Research Center School of Basic Medical Sciences Fudan University Shanghai China Shanghai Key Laboratory of Miccai Shanghai China
Cardiovascular disease, the leading cause of death globally, is an age-related disease. Understanding the morphological and functional changes of the heart during ageing is a key scientific question, the answer to whi... 详细信息
来源: 评论
Design of Target Behavior Intelligent Analysis System Based on Distributed computing
Design of Target Behavior Intelligent Analysis System Based ...
收藏 引用
2019 IEEE International Conference on Signal, Information and data Processing, ICSIDP 2019
作者: Pan, Xinlong Cheng, Xueqi Yao, Libo Zhu, Zhenqiu DIng, Biao Tang, Tiantian Li, Minbo Liu, Chuanhui Institute of Information Fusion Naval Aviation University Yantai China CAS Key Laboratory of Network Data Science Technology Inistitute of Computing Technology Chinese Academy of Sciences Beijing China School of Software Fudan University Shanghai China
Through the fusion processing of target data obtained by radar, electronic reconnaissance, space reconnaissance, technical reconnaissance and civil cooperative system in early warning and surveillance system, multidim... 详细信息
来源: 评论
Efficient uncertainty quantification for Monte Carlo dose calculations using importance (re-)weighting
arXiv
收藏 引用
arXiv 2021年
作者: Stammer, P. Burigo, L. Jäkel, O. Frank, M. Wahl, N. Karlsruhe Institute of Technology Steinbuch Centre for Computing Karlsruhe Germany German Cancer Research Center-DKFZ Department of Medical Physics in Radiation Oncology Heidelberg Germany HIDSS4Health-Helmholtz Information and Data Science School for Health Karlsruhe/Heidelberg Germany Heidelberg Germany Heidelberg Ion Beam Therapy Center-HIT Department of Medical Physics in Radiation Oncology Heidelberg Germany
The high precision and conformity of intensity-modulated particle therapy (IMPT) comes at the cost of susceptibility to treatment uncertainties in particle range and patient set-up. Dose uncertainty quantification and... 详细信息
来源: 评论
Scientific discovery in the age of artificial intelligence
收藏 引用
NATURE 2023年 第7978期621卷 E33-E33页
作者: Wang, Hanchen Fu, Tianfan Du, Yuanqi Gao, Wenhao Huang, Kexin Liu, Ziming Chandak, Payal Liu, Shengchao Van Katwyk, Peter Deac, Andreea Anandkumar, Anima Bergen, Karianne Gomes, Carla P. Ho, Shirley Kohli, Pushmeet Lasenby, Joan Leskovec, Jure Liu, Tie-Yan Manrai, Arjun Marks, Debora Ramsundar, Bharath Song, Le Sun, Jimeng Tang, Jian Velickovic, Petar Welling, Max Zhang, Linfeng Coley, Connor W. Bengio, Yoshua Zitnik, Marinka Department of Engineering University of Cambridge Cambridge UK Department of Computing and Mathematical Sciences California Institute of Technology Pasadena CA USA NVIDIA Santa Clara CA USA Department of Computational Science and Engineering Georgia Institute of Technology Atlanta GA USA Department of Computer Science Cornell University Ithaca NY USA Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA USA Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge MA USA Department of Computer Science Stanford University Stanford CA USA Department of Physics Massachusetts Institute of Technology Cambridge MA USA Harvard-MIT Program in Health Sciences and Technology Cambridge MA USA Mila – Quebec AI Institute Montreal Quebec Canada Université de Montréal Montreal Quebec Canada HEC Montréal Montreal Quebec Canada CIFAR AI Chair Toronto Ontario Canada Department of Earth Environmental and Planetary Sciences Brown University Providence RI USA Data Science Institute Brown University Providence RI USA Center for Computational Astrophysics Flatiron Institute New York NY USA Department of Astrophysical Sciences Princeton University Princeton NJ USA Department of Physics Carnegie Mellon University Pittsburgh PA USA Department of Physics and Center for Data Science New York University New York NY USA Google DeepMind London UK Department of Computer Science and Technology University of Cambridge Cambridge UK Microsoft Research Beijing China Department of Biomedical Informatics Harvard Medical School Boston MA USA Broad Institute of MIT and Harvard Cambridge MA USA Harvard Data Science Initiative Cambridge MA USA Kempner Institute for the Study of Natural and Artificial Intelligence Harvard University Cambridge MA USA Department of Systems Biology Harvard Medical School Boston MA USA Deep Forest Sciences Palo Alto CA USA BioMap Beijing China Mo
来源: 评论
Sparse correspondence analysis for contingency tables
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ruiping Niang, Ndeye Saporta, Gilbert Wang, Huiwen Beijing Information Science & Technology University Beihang University Beijing China CEDRIC Lab CNAM Paris France School of Economics and Management Beijing Advanced Innovation Center for Big Data & Brain Computing Beihang University Beijing China
Since the introduction of the lasso in regression, various sparse methods have been developed in an unsupervised context like sparse principal component analysis (s-PCA), sparse canonical correlation analysis (s-CCA) ... 详细信息
来源: 评论
A Generative Shape Compositional Framework to Synthesise Populations of Virtual Chimaeras
arXiv
收藏 引用
arXiv 2022年
作者: Dou, Haoran Virtanen, Seppo Ravikumar, Nishant Frangi, Alejandro F. The Center for Computational Imaging and Simulation Technologies in Biomedicine within the School of Computing The University of Leeds LeedsLS2 9JT United Kingdom The Christabel Pankhurst Institute Division of Informatics Imaging and Data Sciences University of Manchester ManchesterM1 3BB United Kingdom The Department of Computer Science University of Manchester ManchesterM1 3BB United Kingdom Departments of Electrical Engineering and Cardiovascular Sciences KU Leuven Leuven Belgium Alan Turing Institute London United Kingdom
Generating virtual organ populations that capture sufficient variability while remaining plausible is essential to conduct in-silico trials of medical devices. However, not all anatomical shapes of interest are always... 详细信息
来源: 评论
Modulus-Based Matrix Splitting Iteration Methods for a Class of Stochastic Linear Complementarity Problem
收藏 引用
American Journal of Operations Research 2019年 第6期9卷 245-254页
作者: Qianqian Lu Chenliang Li School of Mathematics and Computing Science Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation Guilin University of Electronic Technology Guilin China
For the expected value formulation of stochastic linear complementarity problem, we establish modulus-based matrix splitting iteration methods. The convergence of the new methods is discussed when the coefficient matr... 详细信息
来源: 评论
Assessing Trustworthy AI in Times of COVID-19: Deep Learning for Predicting a Multiregional Score Conveying the Degree of Lung Compromise in COVID-19 Patients
IEEE Transactions on Technology and Society
收藏 引用
IEEE Transactions on Technology and Society 2022年 第4期3卷 272-289页
作者: Allahabadi, Himanshi Amann, Julia Balot, Isabelle Beretta, Andrea Binkley, Charles Bozenhard, Jonas Bruneault, Frederick Brusseau, James Candemir, Sema Cappellini, Luca Alessandro Chakraborty, Subrata Cherciu, Nicoleta Cociancig, Christina Coffee, Megan Ek, Irene Espinosa-Leal, Leonardo Farina, Davide Fieux-Castagnet, Genevieve Frauenfelder, Thomas Gallucci, Alessio Giuliani, Guya Golda, Adam Van Halem, Irmhild Hildt, Elisabeth Holm, Sune Kararigas, Georgios Krier, Sebastien A. Kuhne, Ulrich Lizzi, Francesca Madai, Vince I. Markus, Aniek F. Masis, Serg Mathez, Emilie Wiinblad Mureddu, Francesco Neri, Emanuele Osika, Walter Ozols, Matiss Panigutti, Cecilia Parent, Brendan Pratesi, Francesca Moreno-Sanchez, Pedro A. Sartor, Giovanni Savardi, Mattia Signoroni, Alberto Sormunen, Hanna-Maria Spezzatti, Andy Srivastava, Adarsh Stephansen, Annette F. Theng, Lau Bee Tithi, Jesmin Jahan Tuominen, Jarno Umbrello, Steven Vaccher, Filippo Vetter, Dennis Westerlund, Magnus Wurth, Renee Zicari, Roberto V. Ey Netherlands Enterprise Intelligence Department Amsterdam1083 HP Netherlands Eth Zurich Health Ethics and Policy Lab Department of Health Sciences and Technology Zürich8092 Switzerland Center for Diplomatic and Strategic Studies Postgraduate Studies in Diplomacy and International Relations Paris75015 France Pisa56124 Italy Hackensack Meridian Health Bioethics Center EdisonNJ08820 United States University of Oxford Faculty of Philosophy OxfordOX2 6GG United Kingdom Collège André- Laurendeau Philosophie Department MontrealQCH8N 2J4 Canada Université du Québec À Montréal École des Médias MontrealQCH2L 2C4 Canada Pace University Philosophy Department New YorkNY10038 United States The Ohio State University Wexner Medical Center Department of Radiology ColumbusOH43210 United States Humanitas Research Hospital Department of Radiology Milan20089 Italy Humanitas University Department of Biomedical Sciences Milan20089 Italy University of New England Faculty of Science Agriculture Business and Law ArmidaleNSW2351 Australia University of Technology Sydney Faculty of Engineering and Information Technology SydneyNSW2007 Australia Scuola Superiore Sant'Anna European Centre of Excellence on the Regulation of Robotics and Ai Pisa56127 Italy University of Bremen Group of Computer Architecture Bremen28359 Germany New York University Grossman School of Medicine Division of Infectious Diseases and Immunology Department of Medicine New YorkNY10016 United States Digital Institute Ai Research Section Stockholm16731 Sweden Arcada University of Applied Sciences Department of Business Management and Analytics Helsinki00550 Finland University of Brescia Radiological Sciences and Public Health Department of Medical and Surgical Specialties Brescia25121 Italy Sncf Reseau Sa Ethique Groupe La Plaine93418 France Institute of Diagnostic and Interventional Radiology University Hospital Zurich Zürich8091 Switzerland Eindhoven University of Tech
This article's main contributions are twofold: 1) to demonstrate how to apply the general European Union's High-Level Expert Group's (EU HLEG) guidelines for trustworthy AI in practice for the domain of he... 详细信息
来源: 评论
Interacting dark energy constraints from the full-shape analyses of BOSS DR12 and DES Year 3 measurements
arXiv
收藏 引用
arXiv 2025年
作者: Tsedrik, M. Lee, S. Markovic, K. Carrilho, P. Pourtsidou, A. Moretti, C. Bose, B. Huff, E. Robertson, A. Taylor, P.L. Zuntz, J. Institute for Astronomy University of Edinburgh Royal Observatory Blackford Hill EdinburghEH9 3HJ United Kingdom Higgs Centre for Theoretical Physics School of Physics and Astronomy EdinburghEH9 3FD United Kingdom Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive PasadenaCA91109 United States SISSA - International School for Advanced Studies Via Bonomea 265 Trieste34136 Italy Centro Nazionale ‘High Performance Computer Big Data and Quantum Computing’ Italy INAF Osservatorio Astronomico di Trieste Via Tiepolo 11 TriesteI-34143 Italy Observatories Carnegie Institution for Science 813 Santa Barbara Street PasadenaCA91101 United States The Ohio State University ColumbusOH43210 United States Department of Physics The Ohio State University ColumbusOH43210 United States Department of Astronomy The Ohio State University ColumbusOH43210 United States
Dark Scattering (DS) is an interacting dark energy model characterised by pure momentum exchange between dark energy and dark matter. It is phenomenologically interesting because it is unconstrained by CMB data and ca... 详细信息
来源: 评论