咨询与建议

限定检索结果

文献类型

  • 3,016 篇 期刊文献
  • 2,646 篇 会议
  • 25 册 图书

馆藏范围

  • 5,687 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,658 篇 工学
    • 2,722 篇 计算机科学与技术...
    • 2,294 篇 软件工程
    • 802 篇 信息与通信工程
    • 523 篇 生物工程
    • 465 篇 电气工程
    • 452 篇 控制科学与工程
    • 356 篇 生物医学工程(可授...
    • 345 篇 光学工程
    • 302 篇 电子科学与技术(可...
    • 198 篇 机械工程
    • 152 篇 化学工程与技术
    • 147 篇 交通运输工程
    • 147 篇 安全科学与工程
    • 139 篇 网络空间安全
    • 126 篇 动力工程及工程热...
    • 119 篇 仪器科学与技术
  • 2,122 篇 理学
    • 1,136 篇 数学
    • 590 篇 生物学
    • 526 篇 物理学
    • 407 篇 统计学(可授理学、...
    • 192 篇 系统科学
    • 177 篇 化学
  • 1,049 篇 管理学
    • 626 篇 管理科学与工程(可...
    • 469 篇 图书情报与档案管...
    • 316 篇 工商管理
  • 366 篇 医学
    • 315 篇 临床医学
    • 268 篇 基础医学(可授医学...
    • 168 篇 公共卫生与预防医...
    • 151 篇 药学(可授医学、理...
  • 194 篇 法学
    • 162 篇 社会学
  • 112 篇 经济学
  • 77 篇 农学
  • 69 篇 教育学
  • 8 篇 文学
  • 6 篇 军事学
  • 6 篇 艺术学
  • 1 篇 历史学

主题

  • 186 篇 deep learning
  • 183 篇 accuracy
  • 150 篇 training
  • 143 篇 machine learning
  • 138 篇 feature extracti...
  • 109 篇 computational mo...
  • 109 篇 semantics
  • 105 篇 data models
  • 100 篇 real-time system...
  • 94 篇 predictive model...
  • 88 篇 convolutional ne...
  • 81 篇 federated learni...
  • 70 篇 graph neural net...
  • 69 篇 reinforcement le...
  • 67 篇 internet of thin...
  • 63 篇 deep neural netw...
  • 62 篇 optimization
  • 60 篇 contrastive lear...
  • 59 篇 image segmentati...
  • 57 篇 adaptation model...

机构

  • 278 篇 college of compu...
  • 117 篇 beijing advanced...
  • 116 篇 school of data a...
  • 101 篇 national enginee...
  • 94 篇 school of comput...
  • 86 篇 nanyang technolo...
  • 73 篇 school of comput...
  • 54 篇 university of ch...
  • 50 篇 school of comput...
  • 50 篇 national enginee...
  • 48 篇 college of intel...
  • 46 篇 peng cheng labor...
  • 44 篇 school of comput...
  • 43 篇 school of comput...
  • 43 篇 institute of dat...
  • 42 篇 key laboratory o...
  • 39 篇 national enginee...
  • 38 篇 school of comput...
  • 34 篇 school of comput...
  • 34 篇 college of compu...

作者

  • 176 篇 niyato dusit
  • 103 篇 hai jin
  • 65 篇 jin hai
  • 44 篇 tao dacheng
  • 41 篇 cheng xueqi
  • 37 篇 zheng wei-shi
  • 30 篇 xiaofei liao
  • 29 篇 guo jiafeng
  • 28 篇 peng hao
  • 26 篇 jin xiaolong
  • 26 篇 shen linlin
  • 25 篇 hu shengshan
  • 24 篇 rajeswari d.
  • 23 篇 sun geng
  • 23 篇 li jianxin
  • 23 篇 kang jiawen
  • 20 篇 yang yang
  • 20 篇 huang qingming
  • 20 篇 dusit niyato
  • 19 篇 cha meeyoung

语言

  • 4,412 篇 英文
  • 1,239 篇 其他
  • 54 篇 中文
检索条件"机构=School of Computing and Data Science"
5687 条 记 录,以下是4691-4700 订阅
排序:
Deep learning for community detection: Progress, challenges and opportunities
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Fanzhen Xue, Shan Wu, Jia Zhou, Chuan Hu, Wenbin Paris, Cecile Nepal, Surya Yang, Jian Yu, Philip S. Department of Computing Macquarie University Sydney Australia CSIRO's Data61 Sydney Australia Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China School of Computer Science Wuhan University Wuhan China Department of Computer Science University of Illinois at Chicago Chicago United States
As communities represent similar opinions, similar functions, similar purposes, etc., community detection is an important and extremely useful tool in both scientific inquiry and data analytics. However, the classic m... 详细信息
来源: 评论
Vehicle re-identification with location and time stamps  32
Vehicle re-identification with location and time stamps
收藏 引用
32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019
作者: Lv, Kai Du, Heming Hou, Yunzhong Deng, Weijian Sheng, Hao Jiao, Jianbin Zheng, Liang Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University State Key Laboratory of Software Development Environment School of Computer Science and Engineering Beihang University University of Chinese Academy of Sciences Australian National University
This paper focuses on the problem of vehicle re-identification (Re-ID). In our attempt, we propose a re-identification framework by exploiting vehicle location and time stamps. The location and time information have t... 详细信息
来源: 评论
A Hybrid Approach for retinal image super-resolution
收藏 引用
Biomedical Engineering Advances 2023年 6卷
作者: Alnur Alimanov Md Baharul Islam Nirase Fathima Abubacker Department of Computer Engineering Bahcesehir University Yildiz Ciragan Cd. Besiktas Istanbul 34349 Turkey College of Data Science & Engineering American University of Malta Triq Dom Mintoff Bormla BML 1013 Malta School of Computing Asia Pacific University of Technology & Innovation Bukit Jalil Kuala Lumpur 57000 Malaysia
Experts require large high-resolution retinal images to detect tiny abnormalities, such as microaneurysms or issues of vascular branches. However, these images often suffer from low quality (e.g., resolution) due to p... 详细信息
来源: 评论
A novel facial expression recognition method based on cross direction attention network
收藏 引用
Engineering Applications of Artificial Intelligence 2025年 157卷
作者: Cheng Peng Guodong Li Likang Lin Bowen Zhang Kun Zou Sio Long Lo Ah Chung Tsoi School of Computer Science University of Electronic Science and Technology of China Zhongshan Institute No. 1 Xueyuan Road Zhongshan 528402 Guangdong China School of Computer Science and Engineering University of Electronic Science and Technology of China Xiyuan Avenue High-tech Zone Chengdu 610000 Sichuan China College of Mathematics and Informatics South China Agricultural University 483 Wushan Road GuangZhou 510642 Guangdong China College of Big Data and Internet Shenzhen Technology University 3002 Lantian Road Shenzhen 510642 Guangdong China Faculty of Innovation Engineering Macau University of Science and Technology Avenida Wai Long Taipa Macau 999078 Macao Special Administrative Region of China School of Computing and Information Technology University of Wollongong Northfields Ave Wollongong NSW 2522 New South Wales Australia
Facial expression recognition (FER) is an area of growing interest in computer vision research. This paper extends the framework provided by the ‘Distract your Attention Network’ (DAN) which consists of multiple par...
来源: 评论
Relation-Guided Representation Learning
arXiv
收藏 引用
arXiv 2020年
作者: Kang, Zhao Lu, Xiao Liang, Jian Bai, Kun Xu, Zenglin School of Computer Science and Engineering University of Electronic Science and Technology of China Sichuan China Trusted Cloud Computing and Big Data Key Laboratory of Sichuan Province Cloud and Smart Industries Group Tencent Beijing China School of Computer Science and Technology Harbin Institute of Technology Shenzhen China Center for Artificial Intelligence Peng Cheng Lab Shenzhen China
Deep auto-encoders (DAEs) have achieved great success in learning data representations via the powerful representability of neural networks. But most DAEs only focus on the most dominant structures which are able to r... 详细信息
来源: 评论
Insights, opportunities and challenges provided by large cell atlases
arXiv
收藏 引用
arXiv 2024年
作者: Hemberg, Martin Marini, Federico Ghazanfar, Shila Ajami, Ahmad Al Abassi, Najla Anchang, Benedict Benayoun, Bérénice A. Cao, Yue Chen, Ken Cuesta-Astroz, Yesid DeBruine, Zach Dendrou, Calliope A. De Vlaminck, Iwijn Imkeller, Katharina Korsunsky, Ilya Lederer, Alex R. Meysman, Pieter Miller, Clint Mullan, Kerry Ohler, Uwe Patikas, Nikolaos Schuck, Jonas Siu, Jacqueline H.Y. Triche, Timothy J. Tsankov, Alex van der Laan, Sander W. Yajima, Masanao Yang, Jean Zanini, Fabio Jelic, Ivana The Gene Lay Institute of Immunology and Inflammation Brigham and Women's Hospital Massachusetts General Hospital United States Harvard Medical School BostonMA United States University Medical Center Mainz Mainz Germany Mainz Germany School of Mathematics and Statistics Faculty of Science University of Sydney NSW2006 Australia Sydney Precision Data Science Centre University of Sydney SydneyNSW2006 Australia Charles Perkins Centre University of Sydney SydneyNSW2006 Australia Goethe University Neurological Institute Edinger Institute University Hospital Frankfurt Frankfurt am Main Germany Goethe University Frankfurt Cancer Institute Frankfurt am Main Germany Frankfurt am Main Germany National Institute of Environmental Health Sciences United States Leonard Davis School of Gerontology University of Southern California Los AngelesCA90089 United States Molecular and Computational Biology Department USC Dornsife College of Letters Arts and Sciences Los AngelesCA90089 United States Biochemistry and Molecular Medicine Department USC Keck School of Medicine Los AngelesCA90089 United States Science Park Hong Kong The University of Texas MD Anderson Cancer Center United States Escuela de Microbiología Universidad de Antioquia Ciudad Universitaria Calle 67 No 12 53-108 Medellín Colombia Instituto Colombiano de Medicina Tropical Universidad CES Sabaneta055413 Colombia School of Computing Grand Valley State University AllendaleMI49401 United States Kennedy Institute of Rheumatology Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences University of Oxford Oxford United Kingdom Cornell University United States Brigham and Women’s Hospital Divisions of Genetics and Rheumatology BostonMA United States and Harvard CambridgeMA United States Lausanne1015 Switzerland Adrem data lab Department of Computer Science University of Antwerp Antwerp Belgium The Rector and Visitors The University of Virginia United States M
The field of single-cell biology is growing rapidly and is generating large amounts of data from a variety of species, disease conditions, tissues, and organs. Coordinated efforts such as CZI CELLxGENE, HuBMAP, Broad ... 详细信息
来源: 评论
IDEA: Integrating Divisive and Ensemble-Agglomerate hierarchical clustering framework for arbitrary shape data
IDEA: Integrating Divisive and Ensemble-Agglomerate hierarch...
收藏 引用
IEEE International Conference on Big data
作者: Hongryul Ahn Inuk Jung Heejoon Chae Minsik Oh Inyoung Kim Sun Kim Division of Data Science DS&ML Center The University of Suwon Hwaseong Republic of Korea School of Computer Science and Engineering Kyungpook National University Daegu Republic of Korea Division of Computer Science Sookmyung Women's University Seoul Republic of Korea BK21 Four Intelligence Computing Seoul National University Seoul Republic of Korea Artificial Intelligence Institute Seoul National University Seoul Republic of Korea Interdisciplinary Program in Bioinformatics and Bioinformatics Institute Seoul National University Seoul Republic of Korea
Hierarchical clustering, a traditional clustering method, has been getting attention again. Among several reasons, a credit goes to a recent paper by Dasgupta in 2016 that proposed a cost function that quantitatively ... 详细信息
来源: 评论
Poisoning attack against estimating from pairwise comparisons
arXiv
收藏 引用
arXiv 2021年
作者: Ma, Ke Xu, Qianqian Zeng, Jinshan Cao, Xiaochun Huang, Qingming The School of Computer Science and Technology University of Chinese Academy of Sciences Beijing100049 China The Artificial Intelligence Research Center Peng Cheng Laboratory Shenzhen518055 China The Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China The School of Computer and Information Engineering Jiangxi Normal University Jiangxi Nanchang330022 China Institute of Information Engineering Chinese Academy of Sciences Beijing100093 China The School of Cyber Security University of Chinese Academy of Sciences Beijing100049 China The Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China The School of Computer Science and Technology University of Chinese Academy of Sciences Beijing100049 China The Key Laboratory of Big Data Mining and Knowledge Management The School of Economics and Management University of Chinese Academy of Sciences Beijing100049 China
As pairwise ranking becomes broadly employed for elections, sports competitions, recommendation, information retrieval and so on, attackers have strong motivation and incentives to manipulate or disrupt the ranking li... 详细信息
来源: 评论
Generalization bound of gradient descent for non-convex metric learning  20
Generalization bound of gradient descent for non-convex metr...
收藏 引用
Proceedings of the 34th International Conference on Neural Information Processing Systems
作者: Mingzhi Dong Xiaochen Yang Rui Zhu Yujiang Wang Jing-Hao Xue School of Computer Science Fudan University Shanghai China and Shanghai Key Laboratory of Data Science Fudan University Shanghai China and Department of Statistical Science University College London London UK Department of Statistical Science University College London London UK The Business School (formerly Cass) City University of London London UK Department of Computing Imperial College London London UK
Metric learning aims to learn a distance measure that can benefit distance-based methods such as the nearest neighbor (NN) classifier. While considerable efforts have been made to improve its empirical performance and...
来源: 评论
Federated learning for 6G communications: Challenges, methods, and future directions
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Yi Yuan, Xingliang Xiong, Zehui Kang, Jiawen Wang, Xiaofei Niyato, Dusit School of Data Science of Technology Heilongjiang University Harbin China Faculty of Information Technology Monash University ClaytonVIC3800 Australia School of Computer Science and Engineering Nanyang Technological University Singapore Singapore College of Intelligence and Computing Tianjin University Tianjin China Energy Research Institute Nanyang Technological University Singapore
—As the 5G communication networks are being widely deployed worldwide, both industry and academia have started to move beyond 5G and explore 6G communications. It is generally believed that 6G will be established on ... 详细信息
来源: 评论