咨询与建议

限定检索结果

文献类型

  • 3,036 篇 期刊文献
  • 2,620 篇 会议
  • 25 册 图书

馆藏范围

  • 5,681 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,661 篇 工学
    • 2,740 篇 计算机科学与技术...
    • 2,312 篇 软件工程
    • 807 篇 信息与通信工程
    • 526 篇 生物工程
    • 477 篇 电气工程
    • 452 篇 控制科学与工程
    • 359 篇 生物医学工程(可授...
    • 351 篇 光学工程
    • 305 篇 电子科学与技术(可...
    • 202 篇 机械工程
    • 153 篇 化学工程与技术
    • 149 篇 交通运输工程
    • 147 篇 安全科学与工程
    • 140 篇 网络空间安全
    • 128 篇 动力工程及工程热...
    • 120 篇 仪器科学与技术
  • 2,138 篇 理学
    • 1,136 篇 数学
    • 592 篇 生物学
    • 531 篇 物理学
    • 406 篇 统计学(可授理学、...
    • 193 篇 系统科学
    • 180 篇 化学
  • 1,057 篇 管理学
    • 632 篇 管理科学与工程(可...
    • 473 篇 图书情报与档案管...
    • 317 篇 工商管理
  • 371 篇 医学
    • 319 篇 临床医学
    • 272 篇 基础医学(可授医学...
    • 168 篇 公共卫生与预防医...
    • 151 篇 药学(可授医学、理...
  • 196 篇 法学
    • 163 篇 社会学
  • 111 篇 经济学
  • 76 篇 农学
  • 69 篇 教育学
  • 9 篇 文学
  • 7 篇 军事学
  • 6 篇 艺术学
  • 1 篇 历史学

主题

  • 182 篇 deep learning
  • 171 篇 accuracy
  • 145 篇 training
  • 142 篇 machine learning
  • 139 篇 feature extracti...
  • 113 篇 computational mo...
  • 108 篇 semantics
  • 101 篇 data models
  • 91 篇 predictive model...
  • 88 篇 real-time system...
  • 87 篇 convolutional ne...
  • 79 篇 federated learni...
  • 74 篇 graph neural net...
  • 71 篇 reinforcement le...
  • 64 篇 internet of thin...
  • 64 篇 deep neural netw...
  • 62 篇 optimization
  • 59 篇 contrastive lear...
  • 57 篇 image segmentati...
  • 56 篇 task analysis

机构

  • 273 篇 college of compu...
  • 120 篇 school of data a...
  • 118 篇 beijing advanced...
  • 102 篇 national enginee...
  • 93 篇 school of comput...
  • 87 篇 nanyang technolo...
  • 73 篇 school of comput...
  • 50 篇 school of comput...
  • 50 篇 university of ch...
  • 49 篇 college of intel...
  • 49 篇 national enginee...
  • 44 篇 school of comput...
  • 43 篇 institute of dat...
  • 42 篇 peng cheng labor...
  • 42 篇 key laboratory o...
  • 41 篇 school of comput...
  • 39 篇 national enginee...
  • 36 篇 school of comput...
  • 35 篇 the college of c...
  • 33 篇 school of comput...

作者

  • 178 篇 niyato dusit
  • 102 篇 hai jin
  • 64 篇 jin hai
  • 44 篇 tao dacheng
  • 41 篇 cheng xueqi
  • 37 篇 zheng wei-shi
  • 30 篇 xiaofei liao
  • 28 篇 peng hao
  • 27 篇 guo jiafeng
  • 26 篇 jin xiaolong
  • 25 篇 hu shengshan
  • 24 篇 sun geng
  • 24 篇 rajeswari d.
  • 24 篇 shen linlin
  • 23 篇 li jianxin
  • 23 篇 kang jiawen
  • 21 篇 liu yang
  • 21 篇 yang yang
  • 19 篇 dusit niyato
  • 19 篇 xiwang dong

语言

  • 4,897 篇 英文
  • 748 篇 其他
  • 48 篇 中文
检索条件"机构=School of Computing and Data Science"
5681 条 记 录,以下是4741-4750 订阅
排序:
Object tracking by the least spatiotemporal searches
arXiv
收藏 引用
arXiv 2020年
作者: Yu, Zhiyong Han, Lei Chen, Chao Guo, Wenzhong Yu, Zhiwen College of Mathematics and Computer Sciences Fuzhou University Key Laboratory of Spatial Data Mining and Information Sharing Ministry of Education Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou350108 China School of Computer Science Northwestern Polytechnical University Xi'an710072 China School of Computer Science Chongqing University Chongqing400044 China
Tracking a suspicious car or a person in a city efficiently is crucial in urban safety management. But how can we complete the task with the minimal number of spatiotemporal searches when massive camera records are in... 详细信息
来源: 评论
A Model to Enhance Governance Issues through Opinion Extraction
A Model to Enhance Governance Issues through Opinion Extract...
收藏 引用
International Conference and Workshop on computing and Communication (IEMCON)
作者: Kamran Shaukat Talha Mahboob Alam Muhammad Ahmed Suhuai Luo Ibrahim A. Hameed Muhammad Shahid Iqbal Jiaming Li Muhammad Atif Iqbal School of Electrical Engineering and Computing The University of Newcastle Newcastle Australia University of Engineering and Technology Lahore Pakistan Norwegian University of Science and Technology Norway Air University Islamabad Pakistan Data61 Commonwealth Scientific and Industrial Research Organization Australia
We live in a world where data is expanding exponentially. Most of the data is unstructured when obtained through the web. Many organizations, institutes, and governments worldwide gather public views regarding their p... 详细信息
来源: 评论
Nuclear Medicine Artificial Intelligence in Action: The Bethesda Report (AI Summit 2024)
arXiv
收藏 引用
arXiv 2024年
作者: Rahmim, Arman Bradshaw, Tyler J. Davidzon, Guido Dutta, Joyita El Fakhri, Georges Ghesani, Munir Karakatsanis, Nicolas A. Li, Quanzheng Liu, Chi Roncali, Emilie Saboury, Babak Yusufaly, Tahir Jha, Abhinav K. Departments of Radiology and Physics University of British Columbia Canada Department of Radiology University of Wisconsin United States Department of Radiology Division of Nuclear Medicine & Molecular Imaging Stanford University United States Department of Biomedical Engineering University of Massachusetts Amherst United States PET Center Departments of Radiology & Biomedical Engineering and Bioinformatics & Data Science Yale University United States United Theranostics Department of Radiology Weill Cornell Medical College Cornell University New York United States Center for Advanced Medical Computing and Analysis Department of Radiology Massachusetts General Hospital Harvard Medical School United States Department of Radiology and Biomedical Imaging Yale University United States Departments of Biomedical Engineering and Radiology University of California Davis United States Department of Radiology and Imaging Sciences Clinical Center National Institutes of Health Russell H. Morgan Department of Radiology and Radiological Sciences Johns Hopkins School of Medicine United States Department of Biomedical Engineering Mallinckrodt Institute of Radiology Washington University St. Louis United States
The 2nd SNMMI Artificial Intelligence (AI) Summit, organized by the SNMMI AI Task Force, took place in Bethesda, MD, on February 29 - March 1, 2024. Bringing together various community members and stakeholders, and fo... 详细信息
来源: 评论
Semi-supervisedly Co-embedding attributed networks
arXiv
收藏 引用
arXiv 2019年
作者: Meng, Zaiqiao Liang, Shangsong Fang, Jinyuan Xiao, Teng Department of Computing Science Sun Yat-sen University University of Glasgow School of Data and Computer Science Sun Yat-sen University
Deep generative models (DGMs) have achieved remarkable advances. Semi-supervised variational auto-encoders (SVAE) as a classical DGM offer a principled framework to effectively generalize from small labelled data to l... 详细信息
来源: 评论
A Knowledge Graph-based Sensitive Feature Selection for Android Malware Classification
A Knowledge Graph-based Sensitive Feature Selection for Andr...
收藏 引用
Asia-Pacific Conference on Software Engineering
作者: Duoyuan Ma Yude Bai Zhenchang Xing Lintan Sun Xiaohong Li Tianjin Key Laboratory of Advanced Networking College of Intelligence and Computing Tianjin University Tianjin China Research School of Computer Science Australian National University Data61 CSIRO Australia State Grid Customer Service Center Tianjin China
The rapid increase in Android malware has brought great challenges to malware analysis. To deal with such a severe situation, it has been proposed an effective way which groups malware with common behaviors into the s... 详细信息
来源: 评论
Collaborative Speculations on Future Themes for Participatory Design in Germany
收藏 引用
i-com 2022年 第2期21卷 283-298页
作者: Mucha, Henrik Correia De Barros, Ana Benjamin, Jesse Josua Benzmüller, Christoph Bischof, Andreas Buchmüller, Sandra De Carvalho, Alexandra Dhungel, Anna-Katharina Draude, Claude Fleck, Marc-Julian Jarke, Juliane Klein, Stefanie Kortekaas, Caroline Kurze, Albrecht Linke, Diane Maas, Franzisca Marsden, Nicola Melo, Ricardo Michel, Susanne Müller-Birn, Claudia Pröbster, Monika Rießenberger, Katja Antonia Schäfer, Mirko Tobias Sörries, Peter Stilke, Julia Volkmann, Torben Weibert, Anne Weinhold, Wilhelm Wolf, Sara Zorn, Isabel Heidt, Michael Berger, Arne Fraunhofer-Institut für Optronik Systemtechnik und Bildauswertung IOSB Karlsruhe Germany Fraunhofer Center for Assistive Information and Communication Solutions-AICOS Porto Portugal University of Twente Enschede Netherlands Freie Universität Berlin Fachbereich Mathematik und Informatik Berlin Germany Chemnitz University of Technology Computer Science Chemnitz Germany TU Braunschweig University Institute of Flight Guidance Braunschweig Germany Universität Witten Herdecke Fakultät für Gesundheit Witten Germany Universität zu Lübeck Institut für Multimediale und Interaktive Systeme Lubeck Germany Fachbereich Elektrotechnik/Informatik Kassel Germany Hochschule Heilbronn Fakultät Informatik Heilbronn Germany Bremen Germany Katholische Hochschule Nordrhein Westfalen Forschung und Innovation in der Sozialen Arbeit Koln Germany Fakultät Angewandte Sozialwissenschaften Koln Germany Freie Universität Berlin Institut für Informatik Human-Centered Computing Research Group Berlin Germany Julius-Maximilians-Universität Würzburg Lehrstuhl für Psychologische Ergonomie Würzburg Germany Hochschule Heilbronn Fakultät Informatik Forschungsprofessur Sozioinformatik Heilbronn Germany Charité Universitätsmedizin Berlin Institute of the History of Medicine and Ethics in Medicine Berlin Germany Freie Universität Berlin Human-Centered Computing Berlin Germany OST-Ostschweizer Fachhochschule Institut für Altersforschung St Gallen Switzerland Utrecht University Utrecht Data School Governing the Digital Society Utrecht Netherlands Universität Siegen Lehrstuhl für Wirtschaftsinformatik und Neue Medien Siegen Germany Universität Würzburg Philosophie und Öffentliches Recht Wurzburg Germany Julius-Maximilians-Universität Würzburg Institut Mensch-Computer-Medien Würzburg Germany TH Köln Institut für Medienforschung und Medienpädagogik Leiterin des Forschungsschwerpunkts Digitale Technologien und Soziale Dienste Koln Germany Hochschule Anhalt Computer Science and Languages
Participatory Design means recognizing that those who will be affected by a future technology should have an active say in its creation. Yet, despite continuous interest in involving people as future users and consume... 详细信息
来源: 评论
Formation-containment control for general linear multi-agent systems with time-varying delays and switching topologies
Formation-containment control for general linear multi-agent...
收藏 引用
International Conference on Control and Automation (ICCA)
作者: Shiyu Zhou Yongzhao Hua Xiwang Dong Qingdong Li Zhang Ren School of Automation Science and Electrical Engineering Science and Technology on Aircraft Control Laboratory Beihang University Beijing P.R. China University of Bristol Bristol United Kingdom Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing P.R. China
Formation-containment control problems for general linear multi-agent systems with time-varying delays and switching topologies are studied. The leaders are required to accomplish a given time-varying formation and th... 详细信息
来源: 评论
Collusion-Proof Result Inference in Crowdsourcing
收藏 引用
Journal of Computer science & Technology 2018年 第2期33卷 351-365页
作者: Peng-Peng Chen Hai-Long Sun Yi-Li Fang Jin-Peng Huai State Key Laboratory of Software Development Environment School of Computer Science and Engineering Beihang University Beijing 100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beijing 100191 China
In traditional crowdsourcing, workers are expected to provide independent answers to tasks so as to ensure the diversity of answers. However, recent studies show that the crowd is not a collection of independent worke... 详细信息
来源: 评论
Learning vertex representations for bipartite networks
arXiv
收藏 引用
arXiv 2019年
作者: Gao, Ming He, Xiangnan Chen, Leihui Zhou, Aoying School of Data Science and Engineering East China Normal University Shanghai200062 China School of Computing National University of Singapore Singapore
—Recent years have witnessed a widespread increase of interest in network representation learning (NRL). By far most research efforts have focused on NRL for homogeneous networks like social networks where vertices a... 详细信息
来源: 评论
A sparse semismooth Newton based proximal majorization-minimization algorithm for nonconvex square-root-loss regression problem
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 9253-9290页
作者: Peipei Tang Chengjing Wang Defeng Sun Kim-Chuan Toh School of Computer and Computing Science Zhejiang University City College Hangzhou China School of Mathematics and National Engineering Laboratory of Integrated Transportation Big Data Application Technology Southwest Jiaotong University Chengdu China Department of Applied Mathematics The Hong Kong Polytechnic University Hung Hom Hong Kong Department of Mathematics and Institute of Operations Research and Analytics National University of Singapore Singapore
In this paper, we consider high-dimensional nonconvex square-root-loss regression problems and introduce a proximal majorization-minimization (PMM) algorithm for solving these problems. Our key idea for making the pro... 详细信息
来源: 评论