咨询与建议

限定检索结果

文献类型

  • 3,036 篇 期刊文献
  • 2,620 篇 会议
  • 25 册 图书

馆藏范围

  • 5,681 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,661 篇 工学
    • 2,740 篇 计算机科学与技术...
    • 2,312 篇 软件工程
    • 807 篇 信息与通信工程
    • 526 篇 生物工程
    • 477 篇 电气工程
    • 452 篇 控制科学与工程
    • 359 篇 生物医学工程(可授...
    • 351 篇 光学工程
    • 305 篇 电子科学与技术(可...
    • 202 篇 机械工程
    • 153 篇 化学工程与技术
    • 149 篇 交通运输工程
    • 147 篇 安全科学与工程
    • 140 篇 网络空间安全
    • 128 篇 动力工程及工程热...
    • 120 篇 仪器科学与技术
  • 2,138 篇 理学
    • 1,136 篇 数学
    • 592 篇 生物学
    • 531 篇 物理学
    • 406 篇 统计学(可授理学、...
    • 193 篇 系统科学
    • 180 篇 化学
  • 1,057 篇 管理学
    • 632 篇 管理科学与工程(可...
    • 473 篇 图书情报与档案管...
    • 317 篇 工商管理
  • 371 篇 医学
    • 319 篇 临床医学
    • 272 篇 基础医学(可授医学...
    • 168 篇 公共卫生与预防医...
    • 151 篇 药学(可授医学、理...
  • 196 篇 法学
    • 163 篇 社会学
  • 111 篇 经济学
  • 76 篇 农学
  • 69 篇 教育学
  • 9 篇 文学
  • 7 篇 军事学
  • 6 篇 艺术学
  • 1 篇 历史学

主题

  • 182 篇 deep learning
  • 171 篇 accuracy
  • 145 篇 training
  • 142 篇 machine learning
  • 139 篇 feature extracti...
  • 113 篇 computational mo...
  • 108 篇 semantics
  • 101 篇 data models
  • 91 篇 predictive model...
  • 88 篇 real-time system...
  • 87 篇 convolutional ne...
  • 79 篇 federated learni...
  • 74 篇 graph neural net...
  • 71 篇 reinforcement le...
  • 64 篇 internet of thin...
  • 64 篇 deep neural netw...
  • 62 篇 optimization
  • 59 篇 contrastive lear...
  • 57 篇 image segmentati...
  • 56 篇 task analysis

机构

  • 273 篇 college of compu...
  • 120 篇 school of data a...
  • 118 篇 beijing advanced...
  • 102 篇 national enginee...
  • 93 篇 school of comput...
  • 87 篇 nanyang technolo...
  • 73 篇 school of comput...
  • 50 篇 school of comput...
  • 50 篇 university of ch...
  • 49 篇 college of intel...
  • 49 篇 national enginee...
  • 44 篇 school of comput...
  • 43 篇 institute of dat...
  • 42 篇 peng cheng labor...
  • 42 篇 key laboratory o...
  • 41 篇 school of comput...
  • 39 篇 national enginee...
  • 36 篇 school of comput...
  • 35 篇 the college of c...
  • 33 篇 school of comput...

作者

  • 178 篇 niyato dusit
  • 102 篇 hai jin
  • 64 篇 jin hai
  • 44 篇 tao dacheng
  • 41 篇 cheng xueqi
  • 37 篇 zheng wei-shi
  • 30 篇 xiaofei liao
  • 28 篇 peng hao
  • 27 篇 guo jiafeng
  • 26 篇 jin xiaolong
  • 25 篇 hu shengshan
  • 24 篇 sun geng
  • 24 篇 rajeswari d.
  • 24 篇 shen linlin
  • 23 篇 li jianxin
  • 23 篇 kang jiawen
  • 21 篇 liu yang
  • 21 篇 yang yang
  • 19 篇 dusit niyato
  • 19 篇 xiwang dong

语言

  • 4,897 篇 英文
  • 748 篇 其他
  • 48 篇 中文
检索条件"机构=School of Computing and Data Science"
5681 条 记 录,以下是4901-4910 订阅
排序:
Local Functional Limit Theorems of Increments for Brownian Motion
收藏 引用
Acta Mathematica Sinica,English Series 2018年 第7期34卷 1074-1086页
作者: Fu Qing GAO Yong Hong LIU School of Mathematics and Statistics Wuhan University Wuhan 430072 P. R. China Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation School of Mathematics and Computing Science Guilin University of Electronic Technology Guilin 541004 P. R. China
In this paper, we present a local Csorgo- Revesz type functional limit theorem for increments of Brownian motion and give its convergence rate. The results also extend the functional forms of Levy's modulus of contin... 详细信息
来源: 评论
Rational evaluation of various epidemic models based on the COVID-19 data of China
arXiv
收藏 引用
arXiv 2020年
作者: Yang, Wuyue Zhang, Dongyan Peng, Liangrong Zhuge, Changjing Hong, Liu School of Mathematics Sun Yat-Sen University Guangzhou510275 China Yau Mathematical Sciences Center Tsinghua University Beijing100084 China Beijing Institute for Scientific and Engineering Computing Faculty of Sciences Beijing University of Technology Beijing100124 China College of Mathematics and Data Science Minjiang University Fuzhou350108 China
In this paper, based on the Akaike information criterion, root mean square error and robustness coefficient, a rational evaluation of various epidemic models/methods, including seven empirical functions, four statisti... 详细信息
来源: 评论
Multiclass Single Label Model for Web Page Classification
Multiclass Single Label Model for Web Page Classification
收藏 引用
2019 International Conference on Recent Advances in Energy-efficient computing and Communication, ICRAECC 2019
作者: Kag, Aakash Jenila Livingston, L.M. Livingston Merlin, L.M. Agnel Livingston, L.G.X. Mirabel Technologies Big Data Analyst Hyderabad HyderabadTG500032 India VIT Chennai School of Computing Science and Engineering 600127 India Jeppiaar Institute of Technology ECE Dept SriperumbudurTamil Nadu631604 India St. Xaviers Catholic college of Engineering CSE Dept. Nagercoil629003 India
Web is a huge repository of information and there is a need of categorization of web pages to facilitate better search and retrieval of pages. Web page classification has become a challenging task due to the exponenti... 详细信息
来源: 评论
KPNet: Towards Minimal Face Detector
arXiv
收藏 引用
arXiv 2020年
作者: Song, Guanglu Liu, Yu Zang, Yuhang Wang, Xiaogang Leng, Biao Yuan, Qingsheng SenseTime X-Lab Chinese University of Hong Kong Hong Kong School of Computer Science and Engineering Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 National Computer network Emergency Response technical Team/Coordination Center of China
The small receptive field and capacity of minimal neural networks limit their performance when using them to be the backbone of detectors. In this work, we find that the appearance feature of a generic face is discrim... 详细信息
来源: 评论
Syntax-enhanced Pre-trained model
arXiv
收藏 引用
arXiv 2020年
作者: Xu, Zenan Guo, Daya Tang, Duyu Su, Qinliang Shou, Linjun Gong, Ming Zhong, Wanjun Quan, Xiaojun Jiang, Daxin Duan, Nan School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Microsoft Research Asia Beijing China Microsoft Search Technology Center Asia Beijing China Guangdong Key Laboratory Big Data Analysis and Processing Guangzhou China Key Lab. of Machine Intelligence and Advanced Computing Ministry of Education China
We study the problem of leveraging the syntactic structure of text to enhance pre-trained models such as BERT and RoBERTa. Existing methods utilize syntax of text either in the pre-training stage or in the fine-tuning... 详细信息
来源: 评论
Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19
arXiv
收藏 引用
arXiv 2020年
作者: Shi, Feng Wang, Jun Shi, Jun Wu, Ziyan Wang, Qian Tang, Zhenyu He, Kelei Shi, Yinghuan Shen, Dinggang Department of Research and Development Shanghai United Imaging Intelligence Co. Ltd. Shanghai200232 Key Laboratory of Specialty Fiber Optics and Optical Access Networks Shanghai Institute for Advanced Communication and Data Science School of Communication and Information Engineering Shanghai University Shanghai200444 United Imaging Intelligence CambridgeMA02140 United States Institute for Medical Imaging Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai200030 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 Medical School of Nanjing University Nanjing China National Institute of Healthcare Data Science Nanjing University Nanjing210093 China National Key Laboratory for Novel Software and Technology Nanjing University Nanjing China
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world. Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19, whereas the... 详细信息
来源: 评论
An efficient matching method for dispatching autonomous vehicles*
An efficient matching method for dispatching autonomous vehi...
收藏 引用
International Conference on Intelligent Transportation
作者: Ming Li Nan Zheng Xinkai Wu Xiang Huo School of Transportation Science and Engineering Beihang University China Department of Civil Engineering Monash University Australia Beijing Advanced Innovation Center for Big Data and Brain Computing School of Transportation Science and Engineering Beihang University China
Autonomous vehicles (AVs), as an emerging transportation tool, are widely discussed for improving traffic mobility. Particularly, when combining with prevalent shared transportation modes, i.e., car-sharing and ride-s... 详细信息
来源: 评论
The importance of environmental factors in forecasting Australian power demand
arXiv
收藏 引用
arXiv 2019年
作者: Eshragh, Ali Ganim, Benjamin Perkins, Terry Bandara, Kasun School of Information and Physical Sciences University of Newcastle NSW Australia International Computer Science Institute BerkeleyCA United States School of Computing and Information Systems Melbourne Centre for Data Science University of Melbourne VIC Australia
We develop a time series model to forecast weekly peak power demand for three main states of Australia for a yearly time-scale, and show the crucial role of environmental factors in improving the forecasts. More preci... 详细信息
来源: 评论
Improving neural relation extraction with implicit mutual relations
arXiv
收藏 引用
arXiv 2019年
作者: Kuang, Jun Cao, Yixin Zheng, Jianbing He, Xiangnan Gao, Ming Zhou, Aoying School of Data Science and Engineering East China Normal University Shanghai China School of Computing National University of Singapore Singapore School of Information Science and Technology University of Science and Technology of China Hefei China KLATASDS-MOE School of Statistics East China Normal University Shanghai China
Relation extraction (RE) aims at extracting the relation between two entities from the text corpora. It is a crucial task for Knowledge Graph (KG) construction. Most existing methods predict the relation between an en... 详细信息
来源: 评论
Innovative informatics methods for process mining in health care
收藏 引用
Journal of Biomedical Informatics 2020年 109卷 103551-103551页
作者: Munoz-Gama, Jorge Martin, Niels Fernandez-Llatas, Carlos Johnson, Owen Sepúlveda, Marcos Department of Computer Science School of Engineering Pontificia Universidad Católica de Chile Santiago Chile Research Group Business Informatics Hasselt University Hasselt Belgium Data Analytics Laboratory Vrije Universiteit Brussel Brussels Belgium ITACA Institute – Process Mining 4 Health Lab Universitat Politècnica de Valencia Valencia Spain Karolinska Institutet Stockholm Sweden School of Computing Leeds University Leeds United Kingdom
来源: 评论