咨询与建议

限定检索结果

文献类型

  • 13,340 篇 期刊文献
  • 7,464 篇 会议
  • 64 册 图书

馆藏范围

  • 20,868 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12,478 篇 工学
    • 7,730 篇 计算机科学与技术...
    • 6,487 篇 软件工程
    • 2,370 篇 信息与通信工程
    • 1,684 篇 生物工程
    • 1,479 篇 电气工程
    • 1,420 篇 控制科学与工程
    • 1,360 篇 生物医学工程(可授...
    • 1,268 篇 光学工程
    • 1,254 篇 电子科学与技术(可...
    • 908 篇 化学工程与技术
    • 687 篇 仪器科学与技术
    • 632 篇 机械工程
    • 488 篇 材料科学与工程(可...
    • 464 篇 动力工程及工程热...
    • 422 篇 安全科学与工程
  • 9,167 篇 理学
    • 4,036 篇 数学
    • 3,001 篇 物理学
    • 2,179 篇 生物学
    • 1,733 篇 统计学(可授理学、...
    • 1,041 篇 地球物理学
    • 968 篇 化学
    • 724 篇 系统科学
  • 3,139 篇 管理学
    • 1,794 篇 管理科学与工程(可...
    • 1,358 篇 图书情报与档案管...
    • 942 篇 工商管理
  • 2,203 篇 医学
    • 1,780 篇 临床医学
    • 1,227 篇 基础医学(可授医学...
    • 744 篇 公共卫生与预防医...
    • 599 篇 药学(可授医学、理...
  • 586 篇 法学
    • 516 篇 社会学
  • 407 篇 经济学
  • 376 篇 农学
  • 241 篇 教育学
  • 56 篇 文学
  • 33 篇 军事学
  • 18 篇 艺术学
  • 3 篇 哲学
  • 2 篇 历史学

主题

  • 493 篇 deep learning
  • 383 篇 machine learning
  • 351 篇 accuracy
  • 303 篇 feature extracti...
  • 260 篇 computational mo...
  • 232 篇 training
  • 227 篇 predictive model...
  • 209 篇 semantics
  • 207 篇 real-time system...
  • 198 篇 optimization
  • 190 篇 reinforcement le...
  • 170 篇 image segmentati...
  • 165 篇 neural networks
  • 162 篇 internet of thin...
  • 155 篇 support vector m...
  • 147 篇 deep neural netw...
  • 145 篇 convolution
  • 137 篇 generative adver...
  • 132 篇 graph neural net...
  • 131 篇 object detection

机构

  • 618 篇 university of ch...
  • 429 篇 department of ph...
  • 394 篇 iccub universita...
  • 306 篇 imperial college...
  • 300 篇 physik-institut ...
  • 298 篇 stfc rutherford ...
  • 294 篇 nikhef national ...
  • 291 篇 center for high ...
  • 289 篇 school of physic...
  • 289 篇 department of ph...
  • 288 篇 cavendish labora...
  • 286 篇 physikalisches i...
  • 285 篇 school of physic...
  • 285 篇 oliver lodge lab...
  • 284 篇 h.h. wills physi...
  • 284 篇 yandex school of...
  • 284 篇 institute of par...
  • 283 篇 school of physic...
  • 280 篇 horia hulubei na...
  • 280 篇 henryk niewodnic...

作者

  • 233 篇 beiter a.
  • 223 篇 barter w.
  • 207 篇 bellee v.
  • 194 篇 bowcock t.j.v.
  • 191 篇 casse g.
  • 175 篇 brundu d.
  • 168 篇 niyato dusit
  • 160 篇 blake t.
  • 154 篇 betancourt c.
  • 150 篇 bencivenni g.
  • 148 篇 back j.j.
  • 148 篇 bay a.
  • 145 篇 borsato m.
  • 145 篇 boettcher t.
  • 144 篇 borisyak m.
  • 142 篇 amato s.
  • 142 篇 cattaneo m.
  • 142 篇 albrecht j.
  • 140 篇 bediaga i.
  • 140 篇 braun s.

语言

  • 16,569 篇 英文
  • 4,094 篇 其他
  • 227 篇 中文
  • 5 篇 德文
  • 5 篇 法文
  • 5 篇 日文
  • 1 篇 朝鲜文
检索条件"机构=School of Computing and Data Science & Institute of Data Science"
20868 条 记 录,以下是4461-4470 订阅
排序:
LMDTA: Molecular Pre-trained and Interaction Fine-tuned Attention Neural Network for Drug-Target Affinity Prediction
LMDTA: Molecular Pre-trained and Interaction Fine-tuned Atte...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Minjie Hu Kuo Yang Kuan Xu Xuezhong Zhou Institute of Medical Intelligence Beijing Key Lab of Traffic Data Analysis and Mining School of Computer Science & Technology Beijing Jiaotong University Beijing China
Accurately predicting drug-target binding affinity is crucial for advancing drug discovery. Recent molecular pre-training models and biological large models provide general molecular representations, but effectively l... 详细信息
来源: 评论
DCUDF2: Improving Efficiency and Accuracy in Extracting Zero Level Sets from Unsigned Distance Fields
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Xuhui Yu, Fugang Hou, Fei Wang, Wencheng Zhang, Zhebin He, Ying State Key Laboratory of Computer Science Institute of Software Chinese Academy of Sciences China University of Chinese Academy of Sciences China The OPPO Research Center United States The College of Computing and Data Science Nanyang Technological University Singapore
Unsigned distance fields (UDFs) allow for the representation of models with complex topologies, but extracting accurate zero level sets from these fields poses significant challenges, particularly in preserving topolo...
来源: 评论
Identifying Trustworthiness Challenges in Deep Learning Models for Continental-Scale Water Quality Prediction
arXiv
收藏 引用
arXiv 2025年
作者: Xia, Xiaobo Liu, Xiaofeng Liu, Jiale Fang, Kuai Lu, Lu Oymak, Samet Currie, William S. Liu, Tongliang School of Computer Science University of Sydney Australia Department of Statistics and Data Science Yale University United States Michigan Institute for Data and AI in Society University of Michigan United States School for Environment and Sustainability University of Michigan United States College of Information Science and Technology Penn State University United States Department of Earth System Science Stanford University United States Department of Electrical Engineering and Computer Science University of Michigan United States
Water quality is foundational to environmental sustainability, ecosystem resilience, and public health. Deep learning models, particularly Long Short-Term Memory (LSTM) networks, offer trans-formative potential for la... 详细信息
来源: 评论
OPTIMIZATION MODELS TO MEET THE CONDITIONS OF ORDER PRESERVATION IN THE ANALYTIC HIERARCHY PROCESS
arXiv
收藏 引用
arXiv 2024年
作者: Tu, Jiancheng Zhibin, Wu Li, Yueyuan XIang, Chuankai Department of Computing Hong Kong Polytechnic University Hong Kong Business School Sichuan University Chengdu610065 China City University of Hong Kong School of Data Science Kowloon Tong Hong Kong
Deriving a priority vector from a pairwise comparison matrix (PCM) is a crucial step in the Analytical Hierarchy Process (AHP). Although there exists a priority vector that satisfies the conditions of order preservati... 详细信息
来源: 评论
Gradient Tracking with Multiple Local SGD for Decentralized Non-Convex Learning
Gradient Tracking with Multiple Local SGD for Decentralized ...
收藏 引用
IEEE Conference on Decision and Control
作者: Songyang Ge Tsung-Hui Chang School of Science and Engineering The Chinese University of Hong Kong Shenzhen and Shenzhen Research Institute of Big Data Shenzhen China
The stochastic Gradient Tracking (GT) method for distributed optimization, is known to be robust against the inter-client variance caused by data heterogeneity. However, the stochastic GT method can be communication-i...
来源: 评论
Unifying and Improving Graph Convolutional Neural Networks with Wavelet Denoising Filters  23
Unifying and Improving Graph Convolutional Neural Networks w...
收藏 引用
32nd ACM World Wide Web Conference, WWW 2023
作者: Wan, Liangtian Li, Xiaona Han, Huijin Yan, Xiaoran Sun, Lu Ning, Zhaolong Xia, Feng Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province School of Software Dalian University of Technology Dalian China Research Center of Big Data Intelligence Research Institute of Artificial Intelligence Zhejiang Lab Hangzhou China Department of Communication Engineering Institute of Information Science Technology Dalian Maritime University Dalian China School of Communication and Information Engineering Chongqing University of Posts and Telecommunications Chongqing China School of Computing Technologies Rmit University Melbourne Australia
Graph convolutional neural network (GCN) is a powerful deep learning framework for network data. However, variants of graph neural architectures can lead to drastically different performance on different tasks. Model ... 详细信息
来源: 评论
Overview of SMP-CAIL2020-Argmine:The Interactive Argument-Pair Extraction in Judgement Document Challenge
收藏 引用
data Intelligence 2021年 第2期3卷 287-307页
作者: Jian Yuan Zhongyu Wei Yixu Gao Wei Chen Yun Song Donghua Zhao Jinglei Ma Zhen Hu Shaokun Zou Donghai Li Xuanjing Huang School of Data Science Fudan UniversityShanghai 200433China Heilongjiang University Heilongjiang 150080China School of Mathematical Sciences Fudan UniversityShanghai 200433China China Judicial Big Data Institute Beijing 100043China THUNISOFT Co. Ltd.Beijing 100084China Department of Computer Science and Technology Tsinghua UniversityBeijing 100084China School of Computer Science Fudan UniversityShanghai 200433China
In this paper we present the results of the Interactive Argument-Pair Extraction in Judgement Document Challenge held by both the Chinese AI and Law Challenge(CAIL)and the Chinese National Social Media Processing Conf... 详细信息
来源: 评论
An Overview on Machine Learning Methods for Partial Differential Equations: From Physics Informed Neural Networks to Deep Operator Learning
arXiv
收藏 引用
arXiv 2024年
作者: Gonon, Lukas Jentzen, Arnulf Kuckuck, Benno Liang, Siyu Riekert, Adrian von Wurstemberger, Philippe Department of Mathematics Imperial College London United Kingdom School of Data Science Shenzhen Research Institute of Big Data The Chinese University of Hong Kong Shenzhen [CUHK-Shenzhen China Applied Mathematics: Institute for Analysis and Numerics Faculty of Mathematics and Computer Science University of Münster Germany School of Mathematics and Statistics Nanjing University of Science and Technology Nanjing China School of Data Science The Chinese University of Hong Kong Shenzhen [CUHK-Shenzhen China Mathematisches Institut Ludwig-Maximilians-Universität München Germany Risklab Department of Mathematics ETH Zurich Switzerland
The approximation of solutions of partial differential equations (PDEs) with numerical algorithms is a central topic in applied mathematics. For many decades, various types of methods for this purpose have been develo... 详细信息
来源: 评论
MP-GAN: Cyber-Attack Detection and Localization for Cyber-Physical Systems with Multi-Process Generative Adversarial Networks*
MP-GAN: Cyber-Attack Detection and Localization for Cyber-Ph...
收藏 引用
Artificial Intelligence of Things and Systems (AIoTSys), International Conference on
作者: Yikui Zhou Jie Wang Junnan Tang Chao Gou Zigui Jiang Dan Li See-Kiong Ng School of Software Engineering Sun-Yat Sen University Zhuhai China School of Intelligent Systems Engineering Sun-Yat Sen University Shenzhen China Institute of Data Science/School of Computing National University of Singapore
Cyber-Physical System (CPS) integrates sensing, computation, cybernetics, and networking to control a hybrid physical system consisting of different functional subsystems, making the production process more intelligen...
来源: 评论
WHEN GNNS MEET SYMMETRY IN ILPS: AN ORBIT-BASED FEATURE AUGMENTATION APPROACH
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Qian Li, Lei Li, Qian Wu, Jianghua Wang, Akang Sun, Ruoyu Luo, Xiaodong Chang, Tsung-Hui Shi, Qingjiang School of Science and Engineering The Chinese University of Hong Kong Shenzhen China Shenzhen International Center for Industrial and Applied Mathematics Shenzhen Research Institute of Big Data China School of Data Science The Chinese University of Hong Kong Shenzhen China School of Artificial Intelligence The Chinese University of Hong Kong Shenzhen China School of Software Engineering Tongji University Shanghai China
A common characteristic in integer linear programs (ILPs) is symmetry, allowing variables to be permuted without altering the underlying problem structure. Recently, GNNs have emerged as a promising approach for solvi... 详细信息
来源: 评论