Topology is usually perceived intrinsically immutable for a given *** argue that optical topologies do not immediately enjoy such ***'optical skyrmions'as an example,we show that they will exhibit varying text...
详细信息
Topology is usually perceived intrinsically immutable for a given *** argue that optical topologies do not immediately enjoy such ***'optical skyrmions'as an example,we show that they will exhibit varying textures and topological invariants(skyrmion numbers),depending on how to construct the skyrmion vector when projecting from real to parameter *** demonstrate the fragility of optical skyrmions under a ubiquitous scenario-simple reflection off an optical *** topology is not without benefit,but it must not be assumed.
This study presents an overview on intelligent reflecting surface(IRS)-enabled sensing and communication for the forthcoming sixth-generation(6G) wireless networks, in which IRSs are strategically deployed to proactiv...
详细信息
This study presents an overview on intelligent reflecting surface(IRS)-enabled sensing and communication for the forthcoming sixth-generation(6G) wireless networks, in which IRSs are strategically deployed to proactively reconfigure wireless environments to improve both sensing and communication(S&C) performance. First, we exploit a single IRS to enable wireless sensing in the base station's(BS's) non-line-of-sight(NLoS) area. In particular, we present three IRS-enabled NLoS target sensing architectures with fully-passive, semi-passive, and active IRSs, respectively. We compare their pros and cons by analyzing the fundamental sensing performance limits for target detection and parameter estimation. Next, we consider a single IRS to facilitate integrated sensing and communication(ISAC), in which the transmit signals at the BS are used for achieving both S&C functionalities, aided by the IRS through reflective beamforming. We present joint transmit signal and receiver processing designs for realizing efficient ISAC, and jointly optimize the transmit beamforming at the BS and reflective beamforming at the IRS to balance the fundamental performance tradeoff between S&C. Furthermore, we discuss multi-IRS networked ISAC, by particularly focusing on multi-IRS-enabled multi-link ISAC, multi-region ISAC, and ISAC signal routing, respectively. Finally, we highlight various promising research topics in this area to motivate future work.
The primary goal of this paper is to introduce a novel method for mining frequent and interesting items by incorporating correlation analysis between two items in an uncertain transactional database using the OWA oper...
详细信息
The concept of the digital twin,also known colloquially as the DT,is a fundamental principle within Industry 4.0 *** recent years,the concept of digital siblings has generated considerable academic and practical ***,a...
详细信息
The concept of the digital twin,also known colloquially as the DT,is a fundamental principle within Industry 4.0 *** recent years,the concept of digital siblings has generated considerable academic and practical ***,academia and industry have used a variety of interpretations,and the scientific literature lacks a unified and consistent definition of this *** purpose of this study is to systematically examine the definitional landscape of the digital twin concept as outlined in scholarly literature,beginning with its origins in the aerospace domain and extending to its contemporary interpretations in the manufacturing ***,this investigationwill focus on the research conducted on Industry 4.0 and smartmanufacturing,elucidating the diverse applications of digital twins in fields including aerospace,intelligentmanufacturing,intelligent transportation,and intelligent cities,among others.
The present study advances object detection and tracking techniques by proposing a novel model combining Automated Image Annotation with Inception v2-based Faster RCNN (AIA-IFRCNN). The research methodology utilizes t...
详细信息
Traditional Global Positioning System(GPS)technology,with its high power consumption and limited perfor-mance in obstructed environments,is unsuitable for many Internet of Things(IoT)*** paper explores LoRa as an alte...
详细信息
Traditional Global Positioning System(GPS)technology,with its high power consumption and limited perfor-mance in obstructed environments,is unsuitable for many Internet of Things(IoT)*** paper explores LoRa as an alternative localization technology,leveraging its low power consumption,robust indoor penetration,and extensive coverage area,which render it highly suitable for diverse IoT *** comprehensively review several LoRa-based localization techniques,including time of arrival(ToA),time difference of arrival(TDoA),round trip time(RTT),received signal strength indicator(RSSI),and fingerprinting *** this review,we evaluate the strengths and limitations of each technique and investigate hybrid models to potentially improve positioning *** studies in smart cities,agriculture,and logistics exemplify the versatility of LoRa for indoor and outdoor *** findings demonstrate that LoRa technology not only overcomes the limitations of GPS regarding power consumption and coverage but also enhances the scalability and efficiency of IoT deployments in complex environments.
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorization of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings.
Beam scanning for joint detection and communication in integrated sensing and communication(ISAC) systems plays a critical role in continuous monitoring and rapid adaptation to dynamic environments. However, the desig...
详细信息
Beam scanning for joint detection and communication in integrated sensing and communication(ISAC) systems plays a critical role in continuous monitoring and rapid adaptation to dynamic environments. However, the design of sequential scanning beams for target detection with the required sensing resolution has not been tackled in the *** bridge this gap, this paper introduces a resolution-aware beam scanning design. In particular, the transmit information beamformer, the covariance matrix of the dedicated radar signal, and the receive beamformer are jointly optimized to maximize the average sum rate of the system while satisfying the sensing resolution and detection probability requirements.A block coordinate descent(BCD)-based optimization framework is developed to address the non-convex design problem. By exploiting successive convex approximation(SCA), S-procedure, and semidefinite relaxation(SDR), the proposed algorithm is guaranteed to converge to a stationary solution with polynomial time complexity. Simulation results show that the proposed design can efficiently handle the stringent detection requirement and outperform existing antenna-activation-based methods in the literature by exploiting the full degrees of freedom(DoFs) brought by all antennas.
The security challenges posed by Infrastructure as code (IaC) are outgrowing established security procedures in an era of rapidly adopting cloud computing and DevOps methodologies. Using security principles to be inte...
详细信息
An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Techniqu...
详细信息
An imbalanced dataset often challenges machine learning, particularly classification methods. Underrepresented minority classes can result in biased and inaccurate models. The Synthetic Minority Over-Sampling Technique (SMOTE) was developed to address the problem of imbalanced data. Over time, several weaknesses of the SMOTE method have been identified in generating synthetic minority class data, such as overlapping, noise, and small disjuncts. However, these studies generally focus on only one of SMOTE’s weaknesses: noise or overlapping. Therefore, this study addresses both issues simultaneously by tackling noise and overlapping in SMOTE-generated data. This study proposes a combined approach of filtering, clustering, and distance modification to reduce noise and overlapping produced by SMOTE. Filtering removes minority class data (noise) located in majority class regions, with the k-nn method applied for filtering. The use of Noise Reduction (NR), which removes data that is considered noise before applying SMOTE, has a positive impact in overcoming data imbalance. Clustering establishes decision boundaries by partitioning data into clusters, allowing SMOTE with modified distance metrics to generate minority class data within each cluster. This SMOTE clustering and distance modification approach aims to minimize overlap in synthetic minority data that could introduce noise. The proposed method is called “NR-Clustering SMOTE,” which has several stages in balancing data: (1) filtering by removing minority classes close to majority classes (data noise) using the k-nn method;(2) clustering data using K-means aims to establish decision boundaries by partitioning data into several clusters;(3) applying SMOTE oversampling with Manhattan distance within each cluster. Test results indicate that the proposed NR-Clustering SMOTE method achieves the best performance across all evaluation metrics for classification methods such as Random Forest, SVM, and Naїve Bayes, compared t
暂无评论