咨询与建议

限定检索结果

文献类型

  • 6,177 篇 会议
  • 5,177 篇 期刊文献
  • 125 册 图书

馆藏范围

  • 11,479 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,400 篇 工学
    • 5,325 篇 计算机科学与技术...
    • 4,384 篇 软件工程
    • 1,744 篇 信息与通信工程
    • 1,063 篇 控制科学与工程
    • 900 篇 生物工程
    • 868 篇 电气工程
    • 679 篇 电子科学与技术(可...
    • 600 篇 生物医学工程(可授...
    • 551 篇 光学工程
    • 538 篇 机械工程
    • 366 篇 仪器科学与技术
    • 344 篇 化学工程与技术
    • 318 篇 动力工程及工程热...
    • 314 篇 网络空间安全
    • 264 篇 交通运输工程
    • 249 篇 安全科学与工程
  • 4,098 篇 理学
    • 2,037 篇 数学
    • 1,293 篇 物理学
    • 1,008 篇 生物学
    • 683 篇 统计学(可授理学、...
    • 415 篇 系统科学
    • 376 篇 化学
  • 2,055 篇 管理学
    • 1,213 篇 管理科学与工程(可...
    • 920 篇 图书情报与档案管...
    • 573 篇 工商管理
  • 610 篇 医学
    • 526 篇 临床医学
    • 463 篇 基础医学(可授医学...
    • 291 篇 公共卫生与预防医...
    • 258 篇 药学(可授医学、理...
  • 392 篇 法学
    • 306 篇 社会学
  • 188 篇 经济学
  • 155 篇 教育学
  • 141 篇 农学
  • 35 篇 文学
  • 35 篇 艺术学
  • 27 篇 军事学
  • 7 篇 哲学
  • 3 篇 历史学

主题

  • 303 篇 deep learning
  • 266 篇 feature extracti...
  • 261 篇 machine learning
  • 224 篇 computational mo...
  • 213 篇 accuracy
  • 190 篇 semantics
  • 175 篇 predictive model...
  • 174 篇 internet of thin...
  • 167 篇 training
  • 150 篇 real-time system...
  • 117 篇 data mining
  • 115 篇 artificial intel...
  • 114 篇 support vector m...
  • 113 篇 neural networks
  • 113 篇 optimization
  • 113 篇 security
  • 106 篇 computer science
  • 96 篇 visualization
  • 93 篇 cloud computing
  • 92 篇 federated learni...

机构

  • 172 篇 university of ch...
  • 123 篇 key laboratory o...
  • 116 篇 university of sc...
  • 101 篇 tianfu cosmic ra...
  • 96 篇 hebei normal uni...
  • 96 篇 school of comput...
  • 93 篇 state key labora...
  • 90 篇 yunnan observato...
  • 88 篇 school of comput...
  • 87 篇 department of ph...
  • 77 篇 key laboratory f...
  • 59 篇 karnataka bangal...
  • 56 篇 school of inform...
  • 56 篇 school of inform...
  • 55 篇 school of comput...
  • 55 篇 school of physic...
  • 54 篇 institute for nu...
  • 53 篇 school of comput...
  • 52 篇 college of compu...
  • 52 篇 college of intel...

作者

  • 97 篇 niyato dusit
  • 82 篇 axikegu
  • 78 篇 fang j.
  • 78 篇 feng c.f.
  • 75 篇 bastieri d.
  • 74 篇 jiang k.
  • 69 篇 kuleshov d.
  • 68 篇 li xin
  • 68 篇 liu d.
  • 67 篇 chen m.j.
  • 67 篇 liu s.m.
  • 67 篇 huang d.h.
  • 67 篇 dai h.l.
  • 66 篇 li cheng
  • 64 篇 liu b.
  • 62 篇 guo y.q.
  • 60 篇 min z.
  • 60 篇 bao y.w.
  • 60 篇 hu h.b.
  • 58 篇 liu h.d.

语言

  • 9,607 篇 英文
  • 1,742 篇 其他
  • 130 篇 中文
  • 14 篇 日文
  • 2 篇 德文
  • 1 篇 法文
  • 1 篇 斯洛文尼亚文
检索条件"机构=School of Computing and Information Technology Feculty of Science and Technology"
11479 条 记 录,以下是4311-4320 订阅
排序:
An Auto-Parallel Method for Deep Learning Models Based on Genetic Algorithm  29
An Auto-Parallel Method for Deep Learning Models Based on Ge...
收藏 引用
29th IEEE International Conference on Parallel and Distributed Systems, ICPADS 2023
作者: Zeng, Yan Huang, Chengchuang Ni, Yijie Zhou, Chunbao Zhang, Jilin Wang, Jue Zhou, Mingyao Xue, Meiting Zhang, Yunquan Hangzhou Dianzi University School of Computer Science and Technology Hangzhou310018 China Ministry of Education Key Laboratory for Modeling and Simulation of Complex Systems Hangzhou310018 China Data Security Governance Zhejiang Engineering Research Center Hangzhou310018 China Hangzhou Dianzi University School of ITMO Joint Institute Hangzhou310018 China Institute of Computer Network Information Center of the Chinese Academy of Sciences Beijing100086 China HuaWei China Institute of Computing Technology of the Chinese Academy of Sciences State Key Laboratory of Computer Architecture Beijing100086 China
As the size of datasets and neural network models increases, automatic parallelization methods for models have become a research hotspot in recent years. The existing auto-parallel methods based on machine learning or... 详细信息
来源: 评论
Blockchain-Based Decentralized Authentication Model for IoT-Based E-Learning and Educational Environments
收藏 引用
Computers, Materials & Continua 2023年 第5期75卷 3133-3158页
作者: Osama A.Khashan Sultan Alamri Waleed Alomoush Mutasem K.Alsmadi Samer Atawneh Usama Mir Research and Innovation Centers Rabdan AcademyP.O.Box 114646Abu DhabiUnited Arab Emirates College of Computing and Informatics Saudi Electronic UniversityRiyadh13316Saudi Arabia School of Information Technology Skyline University CollegeP.O.Box 1797SharjahUnited Arab Emirates Department of MIS College of Applied Studies and Community ServicesImam Abdulrahman Bin Faisal UniversityP.O.Box 1982DammamSaudi Arabia Department of Computer Science University of WindsorWindsorN9J3Y1Canada
In recent times,technology has advanced significantly and is currently being integrated into educational environments to facilitate distance learning and interaction between *** the Internet of Things(IoT)into educati... 详细信息
来源: 评论
Building Knowledge-Grounded Dialogue Systems with Graph-Based Semantic Modeling
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Yizhe Huang, Heyan Gao, Yang Li, Jiawei School of Computer Science and Technology Beijing Institute of Technology Beijing100081 China Southeast Academy of Information Technology Beijing Institute of Technology Fujian Putian351100 China Beijing Engineering Research Center of High Volume Language Information Processing and Cloud Computing Applications Beijing China
The knowledge-grounded dialogue task aims to generate responses that convey information from given knowledge documents. However, it is a challenge for the current sequence-based model to acquire knowledge from complex... 详细信息
来源: 评论
Slice Imputation: Intermediate Slice Interpolation for Anisotropic 3D Medical Image Segmentation
arXiv
收藏 引用
arXiv 2022年
作者: Wu, Zhaotao Wei, Jia Wang, Jiabing Li, Rui The School of Computer Science and Engineer- ing South China University of Technology Guangzhou China The School of Computer Science and Engineering South China University of Technology Guangzhou China The Golisano College of Computing and Information Sciences Rochester Institute of Technology RochesterNY14623 United States
We introduce a novel frame-interpolation-based method for slice imputation to improve segmentation accuracy for anisotropic 3D medical images, in which the number of slices and their corresponding segmentation labels ... 详细信息
来源: 评论
Evolutionary Multitasking Based on Team Learning Strategy
Evolutionary Multitasking Based on Team Learning Strategy
收藏 引用
Artificial Intelligence technology (ACAIT), Asian Conference on
作者: Wei Li Xinyu Gao Lei Wang Qingzheng Xu School of Computer Science and Engineering Xi’an University of Technology Xi’an China Shaanxi Key Laboratory for Network Computing and Security Technology Xi’an China College of Information and Communication National University of Defense Technology Wuhan China
Multi-factorial optimization (MFO) is a popular optimization mechanism recently, which aims to optimize multiple tasks in a single run. Generally, the multi-factorial optimization algorithm uses the random learning st...
来源: 评论
Concatenation of the Gottesman-Kitaev-Preskill code with the XZZX surface code
收藏 引用
Physical Review A 2023年 第6期107卷 062408-062408页
作者: Jiaxuan Zhang Yu-Chun Wu Guo-Ping Guo Key Laboratory of Quantum Information Chinese Academy of Sciences School of Physics University of Science and Technology of China Hefei Anhui 230026 People's Republic of China CAS Center For Excellence in Quantum Information and Quantum Physics University of Science and Technology of China Hefei Anhui 230026 People's Republic of China Hefei National Laboratory University of Science and Technology of China Hefei 230088 People's Republic of China Institute of Artificial Intelligence Hefei Comprehensive National Science Center Hefei Anhui 230088 People's Republic of China Origin Quantum Computing Hefei Anhui 230026 People's Republic of China
Bosonic codes provide an alternative option for quantum error correction. An important category of bosonic codes called the Gottesman-Kitaev-Preskill (GKP) code has aroused much interest recently. Theoretically, the e... 详细信息
来源: 评论
Enhanced Framework for MRI Brain Tumor Recognition with Residual Learning and Intuitive Heatmap Visualization
Enhanced Framework for MRI Brain Tumor Recognition with Resi...
收藏 引用
Innovative computing, Intelligent Communication and Smart Electrical Systems (ICSES), International Conference on
作者: L. Velmurugan R. K Maheswari K. Janani K. Agalya M. Poornima K.C. Gayathri School of Computing Science and Engineering (SCOPE VIT Bhopal University Sehore Madhya Pradesh India Artificial Intelligence and Data Science M.A.M College of Enginnering and Technology Trichy Tamilnadu India Department of Data science and computer applications Manipal institute of Technology Manipal Academy of Higher Education Manipal India Department of Computer Science Engineering Sri Eshwar College of Engineering Coimbatore India Department of Information Technology OASYS Institute of Technology Trichy Tamil Nadu India Chettinad School of physiotherapy (CSP Chettinad Hospital and Research Institute (CHRI) Chettinad Academy of Research and Education (CARE) Chennai India
Early detection of brain tumors is crucial for effective treatment, yet it poses a significant challenge due to the rapid nature of the disease's progression. This study explores the application of ResNet, aimed a... 详细信息
来源: 评论
Texture-Guided Saliency Distilling for Unsupervised Salient Object Detection
Texture-Guided Saliency Distilling for Unsupervised Salient ...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Huajun Zhou Bo Qiao Lingxiao Yang Jianhuang Lai Xiaohua Xie School of Computer Science and Engineering Sun Yat-sen University China Guangdong Province Key Laboratory of Information Security Technology China Ministry of Education Key Laboratory of Machine Intelligence and Advanced Computing China
Deep Learning-based Unsupervised Salient Object Detection (USOD) mainly relies on the noisy saliency pseudo labels that have been generated from traditional handcraft methods or pre-trained networks. To cope with the ...
来源: 评论
Federated Causally Invariant Feature Learning  39
Federated Causally Invariant Feature Learning
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Guo, Xianjie Yu, Kui Cui, Lizhen Yu, Han Li, Xiaoxiao School of Computer Science and Information Engineering Hefei University of Technology China Key Laboratory of Knowledge Engineering with Big Data of Ministry of Education China School of Software Shandong University China College of Computing and Data Science Nanyang Technological University Singapore Department of Electrical and Computer Engineering The University of British Columbia Canada Vector Institute Canada
Federated feature selection (FFS) is a promising field for selecting informative features while preserving data privacy in federated learning (FL) settings. Existing FFS methods focus on capturing the correlations bet... 详细信息
来源: 评论
LHAASO-KM2A detector simulation using Geant4
收藏 引用
Radiation Detection technology and Methods 2024年 第3期8卷 1437-1447页
作者: Zhen Cao F.Aharonian Q.An Axikegu Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi J.T.Cai Q.Cao W.Y.Cao Zhe Cao J.Chang J.F.Chang A.M.Chen E.S.Chen Liang Chen Lin Chen Long Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen Y.Chen N.Cheng Y.D.Cheng M.Y.Cui S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu X.Q.Dong K.K.Duan J.H.Fan Y.Z.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng X.T.Feng Y.L.Feng S.Gabici B.Gao C.D.Gao L.Q.Gao Q.Gao W.Gao W.K.Gao M.M.Ge L.S.Geng G.Giacinti G.H.Gong Q.B.Gou M.H.Gu F.L.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.Y.He X.B.He Y.He Y.K.Hor B.W.Hou C.Hou X.Hou H.B.Hu Q.Hu S.C.Hu D.H.Huang T.Q.Huang W.J.Huang X.T.Huang X.Y.Huang Y.Huang Z.C.Huang X.L.Ji H.Y.Jia K.Jia K.Jiang X.W.Jiang Z.J.Jiang M.Jin M.M.Kang T.Ke D.Kuleshov K.Kurinov B.B.Li Cheng Li Cong Li D.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li Jian Li Jie Li K.Li W.L.Li W.L.Li X.R.Li Xin Li Y.Z.Li Zhe Li Zhuo Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.Liu Y.N.Liu R.Lu Q.Luo H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao Z.Min W.Mitthumsiri H.J.Mu Y.C.Nan A.Neronov Z.W.Ou B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi Y.Q.Qi B.Q.Qiao J.J.Qin D.Ruffolo A.Sáiz D.Semikoz C.Y.Shao L.Shao O.Shchegolev X.D.Sheng F.W.Shu H.C.Song Yu.V.Stenkin V.Stepanov Y.Su Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Q.W.Tang Z.B.Tang W.W.Tian C.Wang C.B.Wang G.W.Wang H.G.Wang H.H.Wang J.C.Wang K.Wang L.P.Wang L.Y.Wang P.H.Wang R.Wang W.Wang X.G.Wang X.Y.Wang Y.Wang Y.D.Wang Y.J.Wang Z.H.Wang Z.X.Wang Zhen Wang Zheng Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu X.F.Wu Y.S.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang D.X.Xiao G.Xiao G.G.Xin Y.L.Xin Y.Xing Z.Xiong D.L.Xu R.F.Xu R.X.Xu W.L.Xu L.Xue D.H.Yan J.Z.Yan T.Yan C.W.Yang F.Yang F.F.Yang H.W.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.Yue H.D.Zeng T.X.Zeng W.Zeng M.Zha B.B.Zhang F.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang L.X.Zhang Li Zhang P.F.Zhang P.P.Zhang R.Zhang S.B.Zh Key Laboratory of Particle Astrophysics&Experimental Physics Division&Computing Center Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049China University of Chinese Academy of Sciences Beijing100049China TIANFU Cosmic Ray Research Center ChengduSichuanChina Dublin Institute for Advanced Studies 31 Fitzwilliam Place2 DublinIreland Max-Planck-Institute for Nuclear Physics 69029Heidelberg103980Germany State Key Laboratory of Particle Detection and Electronics BeijingChina University of Science and Technology of China Hefei230026AnhuiChina School of Physical Science and Technology&School of Information Science and Technology Southwest Jiaotong UniversityChengdu610031SichuanChina School of Astronomy and Space Science Nanjing UniversityNanjing210023JiangsuChina Center for Astrophysics Guangzhou UniversityGuangzhou510006GuangdongChina Hebei Normal University Shijiazhuang050024HebeiChina Key Laboratory of Dark Matter and Space Astronomy&Key Laboratory of Radio Astronomy Purple Mountain ObservatoryChinese Academy of SciencesNanjing 210023JiangsuChina Tsung-Dao Lee Institute&School of Physics and Astronomy Shanghai Jiao Tong UniversityShanghai 200240China Key Laboratory for Research in Galaxies and Cosmology Shanghai Astronomical ObservatoryChinese Academy of SciencesShanghai 200030China Key Laboratory of Cosmic Rays(Tibet University) Ministry of EducationLhasa 850000TibetChina National Astronomical Observatories Chinese Academy of SciencesBeijing 100101China School of Physics and Astronomy(Zhuhai)&School of Physics(Guangzhou)&Sino-French Institute of Nuclear Engineering and Technology(Zhuhai) Sun Yat-sen UniversityGuangzhouZhuhai 510275519000GuangdongChina School of Physics and Astronomy Yunnan UniversityKunming 650091YunnanChina Institute of Frontier and Interdisciplinary Science Shandong UniversityQingdao 266237ShandongChina APC UniversitéParis CitéCNRS/IN2P3CEA/IRFUObservatoire de ParisParis 11975205France Department of Engineering Phys
KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 *** simulation is the important foundation for estimating detector performance and data *** is a ... 详细信息
来源: 评论