咨询与建议

限定检索结果

文献类型

  • 6,177 篇 会议
  • 5,196 篇 期刊文献
  • 125 册 图书

馆藏范围

  • 11,498 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,400 篇 工学
    • 5,327 篇 计算机科学与技术...
    • 4,386 篇 软件工程
    • 1,746 篇 信息与通信工程
    • 1,064 篇 控制科学与工程
    • 900 篇 生物工程
    • 866 篇 电气工程
    • 676 篇 电子科学与技术(可...
    • 600 篇 生物医学工程(可授...
    • 556 篇 光学工程
    • 538 篇 机械工程
    • 366 篇 仪器科学与技术
    • 344 篇 化学工程与技术
    • 318 篇 动力工程及工程热...
    • 316 篇 网络空间安全
    • 264 篇 交通运输工程
    • 249 篇 安全科学与工程
  • 4,100 篇 理学
    • 2,036 篇 数学
    • 1,294 篇 物理学
    • 1,009 篇 生物学
    • 681 篇 统计学(可授理学、...
    • 415 篇 系统科学
    • 375 篇 化学
  • 2,056 篇 管理学
    • 1,214 篇 管理科学与工程(可...
    • 920 篇 图书情报与档案管...
    • 573 篇 工商管理
  • 612 篇 医学
    • 527 篇 临床医学
    • 465 篇 基础医学(可授医学...
    • 291 篇 公共卫生与预防医...
    • 258 篇 药学(可授医学、理...
  • 393 篇 法学
    • 306 篇 社会学
  • 188 篇 经济学
  • 155 篇 教育学
  • 141 篇 农学
  • 35 篇 文学
  • 35 篇 艺术学
  • 27 篇 军事学
  • 7 篇 哲学
  • 3 篇 历史学

主题

  • 304 篇 deep learning
  • 260 篇 feature extracti...
  • 260 篇 machine learning
  • 224 篇 computational mo...
  • 208 篇 accuracy
  • 187 篇 semantics
  • 175 篇 internet of thin...
  • 175 篇 predictive model...
  • 167 篇 training
  • 149 篇 real-time system...
  • 118 篇 data mining
  • 114 篇 neural networks
  • 113 篇 support vector m...
  • 113 篇 optimization
  • 112 篇 artificial intel...
  • 111 篇 security
  • 106 篇 computer science
  • 95 篇 visualization
  • 92 篇 data models
  • 90 篇 cloud computing

机构

  • 175 篇 university of ch...
  • 123 篇 key laboratory o...
  • 116 篇 university of sc...
  • 101 篇 tianfu cosmic ra...
  • 96 篇 school of comput...
  • 95 篇 hebei normal uni...
  • 93 篇 state key labora...
  • 90 篇 yunnan observato...
  • 88 篇 school of comput...
  • 87 篇 department of ph...
  • 78 篇 key laboratory f...
  • 59 篇 karnataka bangal...
  • 57 篇 school of inform...
  • 57 篇 school of inform...
  • 54 篇 school of comput...
  • 54 篇 school of comput...
  • 53 篇 college of compu...
  • 53 篇 college of intel...
  • 52 篇 institute for nu...
  • 52 篇 school of physic...

作者

  • 97 篇 niyato dusit
  • 83 篇 axikegu
  • 78 篇 fang j.
  • 78 篇 feng c.f.
  • 77 篇 jiang k.
  • 76 篇 bastieri d.
  • 71 篇 kuleshov d.
  • 71 篇 li cheng
  • 70 篇 li xin
  • 70 篇 liu d.
  • 69 篇 chen m.j.
  • 69 篇 liu s.m.
  • 68 篇 huang d.h.
  • 67 篇 dai h.l.
  • 63 篇 min z.
  • 61 篇 guo y.q.
  • 58 篇 liu b.
  • 57 篇 bao y.w.
  • 56 篇 heller m.
  • 56 篇 hu h.b.

语言

  • 9,626 篇 英文
  • 1,742 篇 其他
  • 130 篇 中文
  • 14 篇 日文
  • 2 篇 德文
  • 1 篇 法文
  • 1 篇 斯洛文尼亚文
检索条件"机构=School of Computing and Information Technology Feculty of Science and Technology"
11498 条 记 录,以下是4341-4350 订阅
排序:
ConvBoost: Boosting ConvNets for Sensor-based Activity Recognition
arXiv
收藏 引用
arXiv 2023年
作者: Shao, Shuai Guan, Yu Zhai, Bing Missier, Paolo Plötz, Thomas Department of Computer Science University of Warwick Coventry United Kingdom Computer and Information Sciences Northumbria University Newcastle upon Tyne United Kingdom School of Computing Newcastle University Newcastle upon Tyne United Kingdom School of Interactive Computing Georgia Institute of Technology Atlanta United States
Human activity recognition (HAR) is one of the core research themes in ubiquitous and wearable computing. With the shift to deep learning (DL) based analysis approaches, it has become possible to extract high-level fe... 详细信息
来源: 评论
Evolutionary Multitasking Based on Team Learning Strategy
Evolutionary Multitasking Based on Team Learning Strategy
收藏 引用
Artificial Intelligence technology (ACAIT), Asian Conference on
作者: Wei Li Xinyu Gao Lei Wang Qingzheng Xu School of Computer Science and Engineering Xi’an University of Technology Xi’an China Shaanxi Key Laboratory for Network Computing and Security Technology Xi’an China College of Information and Communication National University of Defense Technology Wuhan China
Multi-factorial optimization (MFO) is a popular optimization mechanism recently, which aims to optimize multiple tasks in a single run. Generally, the multi-factorial optimization algorithm uses the random learning st...
来源: 评论
Enhanced Framework for MRI Brain Tumor Recognition with Residual Learning and Intuitive Heatmap Visualization
Enhanced Framework for MRI Brain Tumor Recognition with Resi...
收藏 引用
Innovative computing, Intelligent Communication and Smart Electrical Systems (ICSES), International Conference on
作者: L. Velmurugan R. K Maheswari K. Janani K. Agalya M. Poornima K.C. Gayathri School of Computing Science and Engineering (SCOPE VIT Bhopal University Sehore Madhya Pradesh India Artificial Intelligence and Data Science M.A.M College of Enginnering and Technology Trichy Tamilnadu India Department of Data science and computer applications Manipal institute of Technology Manipal Academy of Higher Education Manipal India Department of Computer Science Engineering Sri Eshwar College of Engineering Coimbatore India Department of Information Technology OASYS Institute of Technology Trichy Tamil Nadu India Chettinad School of physiotherapy (CSP Chettinad Hospital and Research Institute (CHRI) Chettinad Academy of Research and Education (CARE) Chennai India
Early detection of brain tumors is crucial for effective treatment, yet it poses a significant challenge due to the rapid nature of the disease's progression. This study explores the application of ResNet, aimed a... 详细信息
来源: 评论
Concatenation of the Gottesman-Kitaev-Preskill code with the XZZX surface code
收藏 引用
Physical Review A 2023年 第6期107卷 062408-062408页
作者: Jiaxuan Zhang Yu-Chun Wu Guo-Ping Guo Key Laboratory of Quantum Information Chinese Academy of Sciences School of Physics University of Science and Technology of China Hefei Anhui 230026 People's Republic of China CAS Center For Excellence in Quantum Information and Quantum Physics University of Science and Technology of China Hefei Anhui 230026 People's Republic of China Hefei National Laboratory University of Science and Technology of China Hefei 230088 People's Republic of China Institute of Artificial Intelligence Hefei Comprehensive National Science Center Hefei Anhui 230088 People's Republic of China Origin Quantum Computing Hefei Anhui 230026 People's Republic of China
Bosonic codes provide an alternative option for quantum error correction. An important category of bosonic codes called the Gottesman-Kitaev-Preskill (GKP) code has aroused much interest recently. Theoretically, the e... 详细信息
来源: 评论
A Reference Vector-Assisted Many-Objective Optimization Algorithm with Adaptive Niche Dominance Relation
收藏 引用
Intelligent Automation & Soft computing 2024年 第2期39卷 189-211页
作者: Fangzhen Ge Yating Wu Debao Chen Longfeng Shen School of Computer Science and Technology Huaibei Normal UniversityHuaibei340604China School of Physic and Electronic Information Huaibei Normal UniversityHuaibei340604China Anhui Engineering Research Center for Intelligent Computing and Application on Cognitive Behavior(ICACB) Huaibei Normal UniversityHuaibei340604China Anhui Province Key Laboratory of Intelligent Computing and Applications Huaibei Normal UniversityHuaibei340604China Institute of Artificial Intelligence Hefei Comprehensive National Science CenterHefei230000China
It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence... 详细信息
来源: 评论
LHAASO-KM2A detector simulation using Geant4
收藏 引用
Radiation Detection technology and Methods 2024年 第3期8卷 1437-1447页
作者: Zhen Cao F.Aharonian Q.An Axikegu Y.X.Bai Y.W.Bao D.Bastieri X.J.Bi Y.J.Bi J.T.Cai Q.Cao W.Y.Cao Zhe Cao J.Chang J.F.Chang A.M.Chen E.S.Chen Liang Chen Lin Chen Long Chen M.J.Chen M.L.Chen Q.H.Chen S.H.Chen S.Z.Chen T.L.Chen Y.Chen N.Cheng Y.D.Cheng M.Y.Cui S.W.Cui X.H.Cui Y.D.Cui B.Z.Dai H.L.Dai Z.G.Dai Danzengluobu X.Q.Dong K.K.Duan J.H.Fan Y.Z.Fan J.Fang K.Fang C.F.Feng L.Feng S.H.Feng X.T.Feng Y.L.Feng S.Gabici B.Gao C.D.Gao L.Q.Gao Q.Gao W.Gao W.K.Gao M.M.Ge L.S.Geng G.Giacinti G.H.Gong Q.B.Gou M.H.Gu F.L.Guo X.L.Guo Y.Q.Guo Y.Y.Guo Y.A.Han H.H.He H.N.He J.Y.He X.B.He Y.He Y.K.Hor B.W.Hou C.Hou X.Hou H.B.Hu Q.Hu S.C.Hu D.H.Huang T.Q.Huang W.J.Huang X.T.Huang X.Y.Huang Y.Huang Z.C.Huang X.L.Ji H.Y.Jia K.Jia K.Jiang X.W.Jiang Z.J.Jiang M.Jin M.M.Kang T.Ke D.Kuleshov K.Kurinov B.B.Li Cheng Li Cong Li D.Li F.Li H.B.Li H.C.Li H.Y.Li J.Li Jian Li Jie Li K.Li W.L.Li W.L.Li X.R.Li Xin Li Y.Z.Li Zhe Li Zhuo Li E.W.Liang Y.F.Liang S.J.Lin B.Liu C.Liu D.Liu H.Liu H.D.Liu J.Liu J.L.Liu J.Y.Liu M.Y.Liu R.Y.Liu S.M.Liu W.Liu Y.Liu Y.N.Liu R.Lu Q.Luo H.K.Lv B.Q.Ma L.L.Ma X.H.Ma J.R.Mao Z.Min W.Mitthumsiri H.J.Mu Y.C.Nan A.Neronov Z.W.Ou B.Y.Pang P.Pattarakijwanich Z.Y.Pei M.Y.Qi Y.Q.Qi B.Q.Qiao J.J.Qin D.Ruffolo A.Sáiz D.Semikoz C.Y.Shao L.Shao O.Shchegolev X.D.Sheng F.W.Shu H.C.Song Yu.V.Stenkin V.Stepanov Y.Su Q.N.Sun X.N.Sun Z.B.Sun P.H.T.Tam Q.W.Tang Z.B.Tang W.W.Tian C.Wang C.B.Wang G.W.Wang H.G.Wang H.H.Wang J.C.Wang K.Wang L.P.Wang L.Y.Wang P.H.Wang R.Wang W.Wang X.G.Wang X.Y.Wang Y.Wang Y.D.Wang Y.J.Wang Z.H.Wang Z.X.Wang Zhen Wang Zheng Wang D.M.Wei J.J.Wei Y.J.Wei T.Wen C.Y.Wu H.R.Wu S.Wu X.F.Wu Y.S.Wu S.Q.Xi J.Xia J.J.Xia G.M.Xiang D.X.Xiao G.Xiao G.G.Xin Y.L.Xin Y.Xing Z.Xiong D.L.Xu R.F.Xu R.X.Xu W.L.Xu L.Xue D.H.Yan J.Z.Yan T.Yan C.W.Yang F.Yang F.F.Yang H.W.Yang J.Y.Yang L.L.Yang M.J.Yang R.Z.Yang S.B.Yang Y.H.Yao Z.G.Yao Y.M.Ye L.Q.Yin N.Yin X.H.You Z.Y.You Y.H.Yu Q.Yuan H.Yue H.D.Zeng T.X.Zeng W.Zeng M.Zha B.B.Zhang F.Zhang H.M.Zhang H.Y.Zhang J.L.Zhang L.X.Zhang Li Zhang P.F.Zhang P.P.Zhang R.Zhang S.B.Zh Key Laboratory of Particle Astrophysics&Experimental Physics Division&Computing Center Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049China University of Chinese Academy of Sciences Beijing100049China TIANFU Cosmic Ray Research Center ChengduSichuanChina Dublin Institute for Advanced Studies 31 Fitzwilliam Place2 DublinIreland Max-Planck-Institute for Nuclear Physics 69029Heidelberg103980Germany State Key Laboratory of Particle Detection and Electronics BeijingChina University of Science and Technology of China Hefei230026AnhuiChina School of Physical Science and Technology&School of Information Science and Technology Southwest Jiaotong UniversityChengdu610031SichuanChina School of Astronomy and Space Science Nanjing UniversityNanjing210023JiangsuChina Center for Astrophysics Guangzhou UniversityGuangzhou510006GuangdongChina Hebei Normal University Shijiazhuang050024HebeiChina Key Laboratory of Dark Matter and Space Astronomy&Key Laboratory of Radio Astronomy Purple Mountain ObservatoryChinese Academy of SciencesNanjing 210023JiangsuChina Tsung-Dao Lee Institute&School of Physics and Astronomy Shanghai Jiao Tong UniversityShanghai 200240China Key Laboratory for Research in Galaxies and Cosmology Shanghai Astronomical ObservatoryChinese Academy of SciencesShanghai 200030China Key Laboratory of Cosmic Rays(Tibet University) Ministry of EducationLhasa 850000TibetChina National Astronomical Observatories Chinese Academy of SciencesBeijing 100101China School of Physics and Astronomy(Zhuhai)&School of Physics(Guangzhou)&Sino-French Institute of Nuclear Engineering and Technology(Zhuhai) Sun Yat-sen UniversityGuangzhouZhuhai 510275519000GuangdongChina School of Physics and Astronomy Yunnan UniversityKunming 650091YunnanChina Institute of Frontier and Interdisciplinary Science Shandong UniversityQingdao 266237ShandongChina APC UniversitéParis CitéCNRS/IN2P3CEA/IRFUObservatoire de ParisParis 11975205France Department of Engineering Phys
KM2A is one of the main sub-arrays of LHAASO,working on gamma ray astronomy and cosmic ray physics at energies above 10 *** simulation is the important foundation for estimating detector performance and data *** is a ... 详细信息
来源: 评论
Texture-Guided Saliency Distilling for Unsupervised Salient Object Detection
Texture-Guided Saliency Distilling for Unsupervised Salient ...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Huajun Zhou Bo Qiao Lingxiao Yang Jianhuang Lai Xiaohua Xie School of Computer Science and Engineering Sun Yat-sen University China Guangdong Province Key Laboratory of Information Security Technology China Ministry of Education Key Laboratory of Machine Intelligence and Advanced Computing China
Deep Learning-based Unsupervised Salient Object Detection (USOD) mainly relies on the noisy saliency pseudo labels that have been generated from traditional handcraft methods or pre-trained networks. To cope with the ...
来源: 评论
A Novel Temporal Attentive-Pooling based Convolutional Recurrent Architecture for Acoustic Signal Enhancement
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2022年 第5期3卷 833-842页
作者: Hussain, Tassadaq Wang, Wei-Chien Gogate, Mandar Dashtipour, Kia Tsao, Yu Lu, Xugang Ahsan, Adeel Hussain, Amir Edinburgh Napier University School of Computing Edinburgh EH11 4BN United Kingdom National Cheng Kung University Institute of Computer and Communication Engineering Tainan 701 Taiwan Academia Sinica Research Center for Information Technology Innovation Taipei 11529 Taiwan Chung Yuan Christian University Department of Electrical Engineering Taoyuan 32023 Taiwan National Institute of Information and Communications Technology Tokyo 187-0021 Japan University of Wolverhampton School of Mathematics and Computer Science Wolverhampton WV1 1LY United Kingdom
Removing background noise from acoustic observations to obtain clean signals is an important research topic regarding numerous real acoustic applications. Owing to their strong model capacity in function mapping, deep... 详细信息
来源: 评论
A 3D Memristive Cubic Map with Dual Discrete Memristors: Design, Implementation, and Application in Image Encryption
收藏 引用
IEEE Transactions on Circuits and Systems for Video technology 2025年
作者: Gao, Suo Iu, Herbert Ho-Ching Erkan, Ugur Simsek, Cemaleddin Toktas, Abdurrahim Cao, Yinghong Wu, Rui Mou, Jun Li, Qi Wang, Chunpeng Dalian Polytechnic University School of Information Science and Engineering Dalian116034 China The University of Western Australia School of Electrical Electronic and Computer Engineering Perth6009 Australia Faculty of Engineering Electrical and Electronics Engineering Respectively Karamanoglu Mehmetbey University Karaman70200 Turkey Ankara University Engineering Faculty Department of Artificial Intelligence and Data Engineering Ankara06830 Turkey Harbin Institute of Technology School of Computer Science and Technology Harbin150001 China Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center National Supercomputer Center in Jinan Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer Science Jinan250000 China
Discrete chaotic systems based on memristors exhibit excellent dynamical properties and are more straightforward to implement in hardware, making them highly suitable for generating cryptographic keystreams. However, ... 详细信息
来源: 评论
A Glove CNN-Bilstm Sentiment Classification  18
A Glove CNN-Bilstm Sentiment Classification
收藏 引用
18th International Computer Conference on Wavelet Active Media technology and information Processing, ICCWAMTIP 2021
作者: Atandoh, Peter Feng, Zhang Adu-Gyamfi, Daniel Leka, Habte Lejebo Atandoh, Paul Hakeem University of Electronic Science and Technology of China School of Information and Software Engineering Chengdu610054 China University of Technology and Applied Sciences School of Computing Information Sciences Department of Cyber Security and Computer Engineering CK Tedam Navrongo Ghana Western Michigan University Department of Statistics KalamazooMI49008-5278 United States
Reviewing products online has become an increasingly popular way for consumers to voice their opinions and feelings about a product or service. Analyzing this Big data of online reviews would help to discern and extra... 详细信息
来源: 评论