咨询与建议

限定检索结果

文献类型

  • 143 篇 期刊文献
  • 92 篇 会议
  • 3 册 图书

馆藏范围

  • 238 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 159 篇 工学
    • 88 篇 计算机科学与技术...
    • 75 篇 软件工程
    • 64 篇 控制科学与工程
    • 47 篇 生物工程
    • 44 篇 生物医学工程(可授...
    • 22 篇 光学工程
    • 17 篇 力学(可授工学、理...
    • 15 篇 电气工程
    • 14 篇 机械工程
    • 13 篇 信息与通信工程
    • 11 篇 电子科学与技术(可...
    • 10 篇 仪器科学与技术
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 5 篇 航空宇航科学与技...
    • 4 篇 建筑学
  • 100 篇 理学
    • 45 篇 生物学
    • 37 篇 数学
    • 36 篇 物理学
    • 15 篇 统计学(可授理学、...
    • 11 篇 化学
    • 9 篇 系统科学
    • 7 篇 地球物理学
  • 29 篇 医学
    • 27 篇 临床医学
    • 24 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 9 篇 公共卫生与预防医...
  • 15 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 11 篇 法学
    • 10 篇 社会学
  • 3 篇 教育学
  • 1 篇 农学

主题

  • 12 篇 robots
  • 10 篇 planning
  • 9 篇 robot sensing sy...
  • 7 篇 three-dimensiona...
  • 7 篇 mobile robots
  • 7 篇 computer vision
  • 7 篇 shape
  • 6 篇 reinforcement le...
  • 6 篇 deep neural netw...
  • 6 篇 magnetic resonan...
  • 6 篇 kinematics
  • 5 篇 grasping
  • 5 篇 task analysis
  • 5 篇 motion planning
  • 5 篇 computational mo...
  • 5 篇 trajectory
  • 5 篇 probabilistic lo...
  • 5 篇 biomedical imagi...
  • 5 篇 training
  • 5 篇 robotics and aut...

机构

  • 7 篇 infn sezione di ...
  • 7 篇 north-west unive...
  • 7 篇 université de st...
  • 7 篇 ncsr demokritos ...
  • 7 篇 robotics center ...
  • 7 篇 infn sezione di ...
  • 7 篇 infn sezione di ...
  • 7 篇 infn sezione di ...
  • 7 篇 universitat poli...
  • 7 篇 università la sa...
  • 7 篇 tbilisi state un...
  • 7 篇 uclouvain centre...
  • 7 篇 università di ge...
  • 7 篇 cadi ayyad unive...
  • 7 篇 università di bo...
  • 7 篇 infn sezione di ...
  • 7 篇 université paris...
  • 6 篇 institut univers...
  • 6 篇 tno technical sc...
  • 6 篇 via s. sofia 62 ...

作者

  • 34 篇 hermans tucker
  • 19 篇 kuntz alan
  • 14 篇 tucker hermans
  • 12 篇 alan kuntz
  • 10 篇 sundaralingam ba...
  • 7 篇 chen a.
  • 7 篇 benoit d.m.
  • 7 篇 ferrara g.
  • 7 篇 ardid m.
  • 7 篇 calvo d.
  • 7 篇 eddymaoui a.
  • 7 篇 kulikovskiy v.
  • 7 篇 labalme m.
  • 7 篇 cho brian y.
  • 7 篇 gal t.
  • 7 篇 bozza c.
  • 7 篇 díaz a.f.
  • 7 篇 boumaaza j.
  • 7 篇 benhassi m.
  • 7 篇 bouasla a.b.

语言

  • 210 篇 英文
  • 28 篇 其他
检索条件"机构=School of Computing and Robotics Center"
238 条 记 录,以下是111-120 订阅
排序:
Safer Motion Planning of Steerable Needles via a Shaft-to-Tissue Force Model
收藏 引用
Journal of Medical robotics Research 2023年 第1-2期8卷
作者: Bentley, Michael Rucker, Caleb Reddy, Chakravarthy Salzman, Oren Kuntz, Alan Robotics Center and Kahlert School of Computing University of Utah Salt Lake City 84112 UT United States The Department of Mechanical Aerospace and Biomedical Engineering University of Tennessee Knoxville 37996 TN United States Huntsman Cancer Institute and School of Medicine University of Utah Salt Lake City 84112 UT United States Department of Computer Science Technion-Israel Institute of Technology Technion City Haifa 3200003 Israel
Steerable needles are capable of accurately targeting difficult-to-reach clinical sites in the body. By bending around sensitive anatomical structures, steerable needles have the potential to reduce the invasiveness o... 详细信息
来源: 评论
Riemannian Optimistic Algorithms
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Xi Yuan, Deming Hong, Yiguang Hu, Zihao Wang, Lei Shi, Guodong Australian Center for Robotics School of Aerospace Mechanical and Mechatronic Engineering The University of Sydney NSW2006 Australia Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China School of Automation Nanjing University of Science and Technology Jiangsu210023 China Shanghai Research Institute for Intelligent Autonomous Systems Tongji University Shanghai201210 China College of Computing Georgia Institute of Technology AtlantaGA30339 United States College of Control Science and Engineering Zhejiang University Zhejiang310058 China
In this paper, we consider Riemannian online convex optimization with dynamic regret. First, we propose two novel algorithms, namely the Riemannian Online Optimistic Gradient Descent (R-OOGD) and the Riemannian Adapti... 详细信息
来源: 评论
Development of a novel computational model for evaluating fall risk in patient room design
arXiv
收藏 引用
arXiv 2020年
作者: Novin, Roya Sabbagh Taylor, Ellen Hermans, Tucker Merryweather, Andrew Department of Mechanical Engineering and Robotics Center University of Utah United States Center for Health Design ConcordCA United States School of Computing and Robotics Center University of Utah United States
Objectives: This study proposes a computational model to evaluate patient room design layout and features that contribute to patient stability and mitigate the risk of fall. Background: While common fall risk assessme... 详细信息
来源: 评论
From Monocular Vision to Autonomous Action: Guiding Tumor Resection via 3D Reconstruction
arXiv
收藏 引用
arXiv 2025年
作者: Acar, Ayberk Smith, Mariana Al-Zogbi, Lidia Watts, Tanner Li, Fangjie Li, Hao Yilmaz, Nural Scheikl, Paul Maria d’Almeida, Jesse F. Sharma, Susheela Branscombe, Lauren Ertop, Tayfun Efe Webster, Robert J. Oguz, Ipek Kuntz, Alan Krieger, Axel Wu, Jie Ying Department of Computer Science Vanderbilt University NashvilleTN37235 United States Department of Mechanical Engineering Johns Hopkins University BaltimoreMD21211 United States Robotics Center Kahlert School of Computing University of Utah Salt Lake CityUT84112 United States Department of Mechanical Engineering Vanderbilt University NashvilleTN37235 United States Virtuoso Surgical NashvilleTN37205 United States Department of Mechanical Aerospace and Biomedical Engineering University of Tennessee KnoxvilleTN37996 United States
Surgical automation requires precise guidance and understanding of the scene. Current methods in the literature rely on bulky depth cameras to create maps of the anatomy, however this does not translate well to space-... 详细信息
来源: 评论
Catastrophic Interference in Reinforcement Learning: A Solution Based on Context Division and Knowledge Distillation
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Tiantian Wang, Xueqian Liang, Bin Yuan, Bo The Intelligent Computing Lab Shenzhen International Graduate School Tsinghua University Shenzhen518055 China The Center for Artificial Intelligence and Robotics Shenzhen International Graduate School Tsinghua University Shenzhen518055 China The Research Center for Navigation and Control Department of Automation Tsinghua University Beijing100084 China
The powerful learning ability of deep neural networks enables reinforcement learning agents to learn competent control policies directly from continuous environments. In theory, to achieve stable performance, neural n... 详细信息
来源: 评论
In-hand object-dynamics inference using tactile fingertips
arXiv
收藏 引用
arXiv 2020年
作者: Sundaralingam, Balakumar Hermans, Tucker University of Utah Robotics Center School of Computing University of Utah Salt Lake CityUT United States
Having the ability to estimate an object’s properties through interaction will enable robots to manipulate novel objects. Object’s dynamics, specifically the friction and inertial parameters have only been estimated... 详细信息
来源: 评论
Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods
收藏 引用
IEEE Transactions on Neural Networks and Learning Systems 2024年 第6期36卷 9737-9757页
作者: Yuji Cao Huan Zhao Yuheng Cheng Ting Shu Yue Chen Guolong Liu Gaoqi Liang Junhua Zhao Jinyue Yan Yun Li Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR China Department of Building Environment and Energy Engineering The Hong Kong Polytechnic University Hong Kong China School of Science and Engineering The Chinese University of Hong Kong Shenzhen China Center for Crowd Intelligence Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS) Shenzhen China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China School of Electrical and Electronic Engineering Nanyang Technological University Jurong West Singapore School of Mechanical Engineering and Automation Harbin Institute of Technology Shenzhen China Shenzhen Institute for Advanced Study University of Electronic Science and Technology of China Shenzhen China i4AI Ltd. London U.K.
With extensive pretrained knowledge and high-level general capabilities, large language models (LLMs) emerge as a promising avenue to augment reinforcement learning (RL) in aspects, such as multitask learning, sample ... 详细信息
来源: 评论
Bipartite Tracking Consensus for General Linear Multi-Agent Systems with Asynchronous Communications over Signed Networks
Bipartite Tracking Consensus for General Linear Multi-Agent ...
收藏 引用
第40届中国控制会议
作者: Runyao Chen Lulu Chen Jinliang Shao Wei Xing Zheng School of Mechanical and Electrical Engineering University of Electronic Science and Technology of China School of Automation Engineering University of Electronic Science and Technology of China Research Center on Crowd Spectrum Intelligence Shenzhen Institute of Artifcial Intelligence and Robotics for Society School of Computing Engineering and Mathematics Western Sydney University
In this paper, the bipartite tracking consensus problem of general linear multi-agent systems over signed networks is investigated, in which an asynchronous communication manner is adopted. The asynchronous setting re... 详细信息
来源: 评论
Opportunities and challenges for monitoring terrestrial biodiversity in the robotics age
收藏 引用
Nature Ecology and Evolution 2025年 第6期9卷 1031-1042页
作者: Pringle, Stephen Dallimer, Martin Goddard, Mark A. Le Goff, Léni K. Hart, Emma Langdale, Simon J. Fisher, Jessica C. Abad, Sara-Adela Ancrenaz, Marc Angeoletto, Fabio Auat Cheein, Fernando Austen, Gail E. Bailey, Joseph J. Baldock, Katherine C. R. Banin, Lindsay F. Banks-Leite, Cristina Barau, Aliyu S. Bashyal, Reshu Bates, Adam J. Bicknell, Jake E. Bielby, Jon Bosilj, Petra Bush, Emma R. Butler, Simon J. Carpenter, Dan Clements, Christopher F. Cully, Antoine Davies, Kendi F. Deere, Nicolas J. Dodd, Michael Drinkwater, Rosie Driscoll, Don A. Dutilleux, Guillaume Dyrmann, Mads Edwards, David P. Farhadinia, Mohammad S. Faruk, Aisyah Field, Richard Fletcher, Robert J. Foster, Chris W. Fox, Richard Francksen, Richard M. Franco, Aldina M. A. Gainsbury, Alison M. Gardner, Charlie J. Giorgi, Ioanna Griffiths, Richard A. Hamaza, Salua Hanheide, Marc Hayward, Matt W. Hedblom, Marcus Helgason, Thorunn Heon, Sui P. Hughes, Kevin A. Hunt, Edmund R. Ingram, Daniel J. Jackson-Mills, George Jowett, Kelly Keitt, Timothy H. Kloepper, Laura N. Kramer-Schadt, Stephanie Labisko, Jim Labrosse, Frédéric Lawson, Jenna Lecomte, Nicolas de Lima, Ricardo F. Littlewood, Nick A. Marshall, Harry H. Masala, Giovanni L. Maskell, Lindsay C. Matechou, Eleni Mazzolai, Barbara McConnell, Alistair Melbourne, Brett A. Miriyev, Aslan Nana, Eric Djomo Ossola, Alessandro Papworth, Sarah Parr, Catherine L. Payo-Payo, Ana Perry, Gad Pettorelli, Nathalie Pillay, Rajeev Potts, Simon G. Prendergast-Miller, Miranda T. Qie, Lan Rolley-Parnell, Persie Rossiter, Stephen J. Rowcliffe, Marcus Rumble, Heather Sadler, Jon P. Sandom, Christopher J. Sanyal, Asiem Schrodt, Franziska Sethi, Sarab S. Shabrani, Adi Siddall, Robert Smith, Simón C. Snep, Robbert P. H. Soulsbury, Carl D. Stanley, Margaret C. Stephens, Philip A. Stephenson, P.J. Struebig, Matthew J. Studley, Matthew Svátek, Martin Tang, Gilbert Taylor, Nicholas K. Umbers, Kate D. L. Ward, Robert J. White, Patrick J. C. Whittingham, Mark J. Wich, Serge Williams, Christopher D. Yakubu, Ibrahim B. Yoh, Natalie Durrell Institute of Conservation and Ecology (DICE) School of Natural Sciences University of Kent Canterbury United Kingdom Centre for Environmental Policy Imperial College London London United Kingdom Department of Geography and Environmental Sciences Northumbria University Newcastle upon Tyne United Kingdom School of Computing Engineering and the Built Environment Edinburgh Napier University Edinburgh United Kingdom Synthotech Ltd Milner Court Hornbeam Square Harrogate United Kingdom Mechanical Engineering Department University College London London United Kingdom HUTAN SWD Kota Kinabalu Malaysia Programa de Pós-Graduação em Gestão e Tecnologia Ambiental da Universidade Federal de Rondonópolis Rondonópolis Brazil Department of Engineering Harper Adams University Newport United Kingdom Applied Ecology Research Group School of Life Sciences Anglia Ruskin University Cambridge United Kingdom Centre for Ecology and Hydrology Penicuik United Kingdom Department of Life Sciences Imperial College London Silwood Park Campus Ascot United Kingdom Department of Urban and Regional Planning Faculty of Earth and Environmental Sciences Bayero University Kano Nigeria Greenhood Nepal Kathmandu Nepal Animal Rural & Environmental Sciences Nottingham Trent University Nottinghamshire United Kingdom School of Biological and Environmental Sciences Liverpool John Moores University Liverpool United Kingdom Lincoln Centre for Autonomous Systems University of Lincoln Lincoln United Kingdom Royal Botanic Garden Edinburgh Edinburgh United Kingdom School of Biological Sciences University of East Anglia Norwich Research Park Norwich United Kingdom Digital Ecology Limited Bristol United Kingdom School of Biological Sciences University of Bristol Bristol United Kingdom Department of Computing Imperial College London London United Kingdom Department of Ecology and Evolutionary Biology University of Colorado Boulder CO United States Faculty of Science Technology Engineering
With biodiversity loss escalating globally, a step change is needed in our capacity to accurately monitor species populations across ecosystems. Robotic and autonomous systems (RAS) offer technological solutions that ...
来源: 评论
Multi-Fingered Active Grasp Learning
Multi-Fingered Active Grasp Learning
收藏 引用
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Qingkai Lu Mark Van der Merwe Tucker Hermans School of Computing and the Robotics Center University of Utah Salt Lake City UT USA NVIDIA Seattle WA USA
Learning-based approaches to grasp planning are preferred over analytical methods due to their ability to better generalize to new, partially observed objects. However, data collection remains one of the biggest bottl... 详细信息
来源: 评论