咨询与建议

限定检索结果

文献类型

  • 140 篇 期刊文献
  • 90 篇 会议
  • 3 册 图书

馆藏范围

  • 233 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 154 篇 工学
    • 88 篇 计算机科学与技术...
    • 77 篇 软件工程
    • 63 篇 控制科学与工程
    • 45 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 23 篇 光学工程
    • 17 篇 力学(可授工学、理...
    • 14 篇 机械工程
    • 14 篇 电气工程
    • 13 篇 信息与通信工程
    • 10 篇 电子科学与技术(可...
    • 9 篇 仪器科学与技术
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 化学工程与技术
  • 96 篇 理学
    • 45 篇 生物学
    • 38 篇 数学
    • 33 篇 物理学
    • 15 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 7 篇 化学
    • 6 篇 地球物理学
  • 26 篇 医学
    • 24 篇 基础医学(可授医学...
    • 24 篇 临床医学
    • 13 篇 药学(可授医学、理...
    • 9 篇 公共卫生与预防医...
  • 16 篇 管理学
    • 11 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
  • 11 篇 法学
    • 10 篇 社会学
  • 3 篇 教育学
  • 1 篇 农学

主题

  • 12 篇 robots
  • 10 篇 planning
  • 9 篇 robot sensing sy...
  • 7 篇 three-dimensiona...
  • 7 篇 mobile robots
  • 7 篇 computer vision
  • 7 篇 shape
  • 6 篇 reinforcement le...
  • 6 篇 deep neural netw...
  • 6 篇 kinematics
  • 5 篇 grasping
  • 5 篇 magnetic resonan...
  • 5 篇 task analysis
  • 5 篇 motion planning
  • 5 篇 image segmentati...
  • 5 篇 computational mo...
  • 5 篇 trajectory
  • 5 篇 probabilistic lo...
  • 5 篇 biomedical imagi...
  • 5 篇 training

机构

  • 7 篇 robotics center ...
  • 6 篇 infn sezione di ...
  • 6 篇 north-west unive...
  • 6 篇 institut univers...
  • 6 篇 tno technical sc...
  • 6 篇 université de st...
  • 6 篇 via s. sofia 62 ...
  • 6 篇 ncsr demokritos ...
  • 6 篇 infn sezione di ...
  • 6 篇 infn sezione di ...
  • 6 篇 comenius univers...
  • 6 篇 infn sezione di ...
  • 6 篇 western sydney u...
  • 6 篇 universitat poli...
  • 6 篇 nvidia
  • 6 篇 università la sa...
  • 6 篇 tbilisi state un...
  • 6 篇 uclouvain centre...
  • 6 篇 università di na...
  • 6 篇 czech technical ...

作者

  • 34 篇 hermans tucker
  • 19 篇 kuntz alan
  • 14 篇 tucker hermans
  • 12 篇 alan kuntz
  • 10 篇 sundaralingam ba...
  • 7 篇 cho brian y.
  • 6 篇 chen a.
  • 6 篇 benoit d.m.
  • 6 篇 ferrara g.
  • 6 篇 ardid m.
  • 6 篇 calvo d.
  • 6 篇 eddymaoui a.
  • 6 篇 kulikovskiy v.
  • 6 篇 labalme m.
  • 6 篇 gal t.
  • 6 篇 bozza c.
  • 6 篇 díaz a.f.
  • 6 篇 boumaaza j.
  • 6 篇 benhassi m.
  • 6 篇 bouasla a.b.

语言

  • 209 篇 英文
  • 24 篇 其他
检索条件"机构=School of Computing and the Robotics Center"
233 条 记 录,以下是111-120 订阅
排序:
Development of a novel computational model for evaluating fall risk in patient room design
arXiv
收藏 引用
arXiv 2020年
作者: Novin, Roya Sabbagh Taylor, Ellen Hermans, Tucker Merryweather, Andrew Department of Mechanical Engineering and Robotics Center University of Utah United States Center for Health Design ConcordCA United States School of Computing and Robotics Center University of Utah United States
Objectives: This study proposes a computational model to evaluate patient room design layout and features that contribute to patient stability and mitigate the risk of fall. Background: While common fall risk assessme... 详细信息
来源: 评论
From Monocular Vision to Autonomous Action: Guiding Tumor Resection via 3D Reconstruction
arXiv
收藏 引用
arXiv 2025年
作者: Acar, Ayberk Smith, Mariana Al-Zogbi, Lidia Watts, Tanner Li, Fangjie Li, Hao Yilmaz, Nural Scheikl, Paul Maria d’Almeida, Jesse F. Sharma, Susheela Branscombe, Lauren Ertop, Tayfun Efe Webster, Robert J. Oguz, Ipek Kuntz, Alan Krieger, Axel Wu, Jie Ying Department of Computer Science Vanderbilt University NashvilleTN37235 United States Department of Mechanical Engineering Johns Hopkins University BaltimoreMD21211 United States Robotics Center Kahlert School of Computing University of Utah Salt Lake CityUT84112 United States Department of Mechanical Engineering Vanderbilt University NashvilleTN37235 United States Virtuoso Surgical NashvilleTN37205 United States Department of Mechanical Aerospace and Biomedical Engineering University of Tennessee KnoxvilleTN37996 United States
Surgical automation requires precise guidance and understanding of the scene. Current methods in the literature rely on bulky depth cameras to create maps of the anatomy, however this does not translate well to space-... 详细信息
来源: 评论
Catastrophic Interference in Reinforcement Learning: A Solution Based on Context Division and Knowledge Distillation
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Tiantian Wang, Xueqian Liang, Bin Yuan, Bo The Intelligent Computing Lab Shenzhen International Graduate School Tsinghua University Shenzhen518055 China The Center for Artificial Intelligence and Robotics Shenzhen International Graduate School Tsinghua University Shenzhen518055 China The Research Center for Navigation and Control Department of Automation Tsinghua University Beijing100084 China
The powerful learning ability of deep neural networks enables reinforcement learning agents to learn competent control policies directly from continuous environments. In theory, to achieve stable performance, neural n... 详细信息
来源: 评论
In-hand object-dynamics inference using tactile fingertips
arXiv
收藏 引用
arXiv 2020年
作者: Sundaralingam, Balakumar Hermans, Tucker University of Utah Robotics Center School of Computing University of Utah Salt Lake CityUT United States
Having the ability to estimate an object’s properties through interaction will enable robots to manipulate novel objects. Object’s dynamics, specifically the friction and inertial parameters have only been estimated... 详细信息
来源: 评论
Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods
收藏 引用
IEEE Transactions on Neural Networks and Learning Systems 2024年 第6期36卷 9737-9757页
作者: Yuji Cao Huan Zhao Yuheng Cheng Ting Shu Yue Chen Guolong Liu Gaoqi Liang Junhua Zhao Jinyue Yan Yun Li Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR China Department of Building Environment and Energy Engineering The Hong Kong Polytechnic University Hong Kong China School of Science and Engineering The Chinese University of Hong Kong Shenzhen China Center for Crowd Intelligence Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS) Shenzhen China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China School of Electrical and Electronic Engineering Nanyang Technological University Jurong West Singapore School of Mechanical Engineering and Automation Harbin Institute of Technology Shenzhen China Shenzhen Institute for Advanced Study University of Electronic Science and Technology of China Shenzhen China i4AI Ltd. London U.K.
With extensive pretrained knowledge and high-level general capabilities, large language models (LLMs) emerge as a promising avenue to augment reinforcement learning (RL) in aspects, such as multitask learning, sample ... 详细信息
来源: 评论
Bipartite Tracking Consensus for General Linear Multi-Agent Systems with Asynchronous Communications over Signed Networks
Bipartite Tracking Consensus for General Linear Multi-Agent ...
收藏 引用
第40届中国控制会议
作者: Runyao Chen Lulu Chen Jinliang Shao Wei Xing Zheng School of Mechanical and Electrical Engineering University of Electronic Science and Technology of China School of Automation Engineering University of Electronic Science and Technology of China Research Center on Crowd Spectrum Intelligence Shenzhen Institute of Artifcial Intelligence and Robotics for Society School of Computing Engineering and Mathematics Western Sydney University
In this paper, the bipartite tracking consensus problem of general linear multi-agent systems over signed networks is investigated, in which an asynchronous communication manner is adopted. The asynchronous setting re... 详细信息
来源: 评论
Catastrophic interference in reinforcement learning: A solution based on context division and knowledge distillation
TechRxiv
收藏 引用
TechRxiv 2021年
作者: Zhang, Tiantian Wang, Xueqian Liang, Bin Yuan, Bo The Intelligent Computing Lab Division of Informatics Shenzhen International Graduate School Tsinghua University Shenzhen518055 China The Center for Artificial Intelligence and Robotics Shenzhen International Graduate School Tsinghua University Shenzhen518055 China The Research Center for Navigation and Control Department of Automation Tsinghua University Beijing100084 China
The powerful learning ability of deep neural networks enables reinforcement learning (RL) agents to learn competent control policies directly from high-dimensional and continuous environments. In theory, to achieve st... 详细信息
来源: 评论
Multi-Fingered Active Grasp Learning
Multi-Fingered Active Grasp Learning
收藏 引用
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Qingkai Lu Mark Van der Merwe Tucker Hermans School of Computing and the Robotics Center University of Utah Salt Lake City UT USA NVIDIA Seattle WA USA
Learning-based approaches to grasp planning are preferred over analytical methods due to their ability to better generalize to new, partially observed objects. However, data collection remains one of the biggest bottl... 详细信息
来源: 评论
Open-Pose 3D Zero-Shot Learning: Benchmark and Challenges
arXiv
收藏 引用
arXiv 2023年
作者: Zhao, Weiguang Yang, Guanyu Zhang, Rui Jiang, Chenru Yang, Chaolong Yan, Yuyao Hussain, Amir Huang, Kaizhu Department of Computer Science University of Liverpool LiverpoolL69 7ZX United Kingdom Department of Foundational Mathematics Xi’an Jiaotong-Liverpool University Suzhou215123 China Department of Mechatronics and Robotics Xi’an Jiaotong-Liverpool University Suzhou215123 China School of Robotic Xi’an Jiaotong-Liverpool University Suzhou215123 China School of Computing Edinburgh Napier University EdinburghEH11 4BN United Kingdom Data Science Research Center Duke Kunshan University Kunshan215316 China
With the explosive 3D data growth, the urgency of utilizing zero-shot learning to facilitate data labeling becomes evident. Recently, methods transferring language or language-image pre-training models like Contrastiv... 详细信息
来源: 评论
Fair Evaluation of Federated Learning Algorithms for Automated Breast Density Classification: The Results of the 2022 ACR-NCI-NVIDIA Federated Learning Challenge
arXiv
收藏 引用
arXiv 2024年
作者: Schmidt, Kendall Bearce, Benjamin Chang, Ken Coombs, Laura Farahani, Keyvan Elbatel, Marawan Mouheb, Kaouther Marti, Robert Zhang, Ruipeng Zhang, Yao Wang, Yanfeng Hu, Yaojun Ying, Haochao Xu, Yuyang Testagrose, Conrad Demirer, Mutlu Gupta, Vikash Akünal, Ünal Bujotzek, Markus Maier-Hein, Klaus H. Qin, Yi Li, Xiaomeng Kalpathy-Cramer, Jayashree Roth, Holger R. American College of Radiology United States The Massachusetts General Hospital United States University of Colorado United States National Institutes of Health National Cancer Institute United States Computer Vision and Robotics Institute University of Girona Spain Cooperative Medianet Innovation Center Shanghai Jiao Tong University China Shanghai AI Laboratory China Real Doctor AI Research Centre Zhejiang University China School of Public Health Zhejiang University China College of Computer Science and Technology Zhejiang University China University of North Florida College of Computing Jacksonville United States Mayo Clinic Florida Radiology United States Division of Medical Image Computing German Cancer Research Center Heidelberg Germany Electronic and Computer Engineering Hong Kong University of Science and Technology China NVIDIA United States
The correct interpretation of breast density is important in the assessment of breast cancer risk. AI has been shown capable of accurately predicting breast density, however, due to the differences in imaging characte... 详细信息
来源: 评论