Electronic auctions(e-auctions)remove the physical limitations of traditional auctions and bring this mechanism to the general ***,most e-auction schemes involve a trusted auctioneer,which is not always credible in **...
详细信息
Electronic auctions(e-auctions)remove the physical limitations of traditional auctions and bring this mechanism to the general ***,most e-auction schemes involve a trusted auctioneer,which is not always credible in *** studies have applied cryptography tools to solve this problem by distributing trust,but they ignore the existence of *** this paper,a blockchain-based Privacy-Preserving and Collusion-Resistant scheme(PPCR)for double auctions is proposed by employing both cryptography and blockchain technology,which is the first decentralized and collusion-resistant double auction scheme that guarantees bidder anonymity and bid privacy.A two-server-based auction framework is designed to support off-chain allocation with privacy preservation and on-chain dispute resolution for collusion resistance.A Dispute Resolution agreement(DR)is provided to the auctioneer to prove that they have conducted the auction correctly and the result is fair and *** addition,a Concise Dispute Resolution protocol(CDR)is designed to handle situations where the number of accused winners is small,significantly reducing the computation cost of dispute *** experimental results confirm that PPCR can indeed achieve efficient collusion resistance and verifiability of auction results with low on-chain and off-chain computational overhead.
Multiarmed bandit(MAB) models are widely used for sequential decision-making in uncertain environments, such as resource allocation in computer communication systems.A critical challenge in interactive multiagent syst...
Multiarmed bandit(MAB) models are widely used for sequential decision-making in uncertain environments, such as resource allocation in computer communication systems.A critical challenge in interactive multiagent systems with bandit feedback is to explore and understand the equilibrium state to ensure stable and tractable system performance.
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
Recently, redactable blockchain has been proposed and leveraged in a wide range of real systems for its unique properties of decentralization, traceability, and transparency while ensuring controllable on-chain data r...
详细信息
Recently, redactable blockchain has been proposed and leveraged in a wide range of real systems for its unique properties of decentralization, traceability, and transparency while ensuring controllable on-chain data redaction. However, the development of redactable blockchain is now obstructed by three limitations, which are data privacy breaches, high communication overhead, and low searching efficiency, respectively. In this paper, we propose PriChain, the first efficient privacy-preserving fine-grained redactable blockchain in decentralized settings. PriChain provides data owners with rights to control who can read and redact on-chain data while maintaining downward compatibility, ensuring the one who can redact will be able to read. Specifically, inspired by the concept of multi-authority attribute-based encryption, we utilize the isomorphism of the access control tree, realizing fine-grained redaction mechanism, downward compatibility, and collusion resistance. With the newly designed structure, PriChain can realize O(n) communication and storage overhead compared to prior O(n2) schemes. Furthermore, we integrate multiple access trees into a tree-based dictionary, optimizing searching efficiency. Theoretical analysis proves that PriChain is secure against the chosen-plaintext attack and has competitive complexity. The experimental evaluations show that PriChain realizes 10× efficiency improvement of searching and 100× lower communication and storage overhead on average compared with existing schemes.
As the device complexity keeps increasing,the blockchain networks have been celebrated as the cornerstone of numerous prominent platforms owing to their ability to provide distributed and immutable ledgers and data-dr...
详细信息
As the device complexity keeps increasing,the blockchain networks have been celebrated as the cornerstone of numerous prominent platforms owing to their ability to provide distributed and immutable ledgers and data-driven autonomous *** distributed consensus algorithm is the core component that directly dictates the performance and properties of blockchain ***,the inherent characteristics of the shared wireless medium,such as fading,interference,and openness,pose significant challenges to achieving consensus within these networks,especially in the presence of malicious jamming *** cope with the severe consensus problem,in this paper,we present a distributed jamming-resilient consensus algorithm for blockchain networks in wireless environments,where the adversary can jam the communication channel by injecting jamming *** on a non-binary slight jamming model,we propose a distributed four-stage algorithm to achieve consensus in the wireless blockchain network,including leader election,leader broadcast,leader aggregation,and leader announcement *** high probability,we prove that our jamming-resilient algorithm can ensure the validity,agreement,termination,and total order properties of consensus with the time complexity of O(n).Both theoretical analyses and empirical simulations are conducted to verify the consistency and efficiency of our algorithm.
From the perspective of state-channel interaction,standard quantum teleportation can be viewed as a communication process characterized by both input and output,functioning as a quantum depolarizing *** achieve a prec...
详细信息
From the perspective of state-channel interaction,standard quantum teleportation can be viewed as a communication process characterized by both input and output,functioning as a quantum depolarizing *** achieve a precise quantification of the quantumness introduced by this channel,we examine its uncertainties,which encompass both statedependent and state-independent ***,for qudit systems,we provide general formulas for these *** analyze the uncertainties associated with standard quantum teleportation when induced by isotropic states,Werner states,and X-states,and we elucidate the correlation between these uncertainties and the parameters of the specific mixed *** findings demonstrate the validity of quantifying these uncertainties.
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical...
详细信息
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical *** paper analyzes two fundamental failure cases in the baseline AD model and identifies key reasons that limit the recognition accuracy of existing approaches. Specifically, by Case-1, we found that the main reason detrimental to current AD methods is that the inputs to the recovery model contain a large number of detailed features to be recovered, which leads to the normal/abnormal area has not/has been recovered into its original state. By Case-2, we surprisingly found that the abnormal area that cannot be recognized in image-level representations can be easily recognized in the feature-level representation. Based on the above observations, we propose a novel recover-then-discriminate(ReDi) framework for *** takes a self-generated feature map(e.g., histogram of oriented gradients) and a selected prompted image as explicit input information to address the identified in Case-1. Additionally, a feature-level discriminative network is introduced to amplify abnormal differences between the recovered and input representations. Extensive experiments on two widely used yet challenging AD datasets demonstrate that ReDi achieves state-of-the-art recognition accuracy.
Dear Editor,This letter proposes a deep synchronization control(DSC) method to synchronize grid-forming converters with power grids. The method involves constructing a novel controller for grid-forming converters base...
详细信息
Dear Editor,This letter proposes a deep synchronization control(DSC) method to synchronize grid-forming converters with power grids. The method involves constructing a novel controller for grid-forming converters based on the stable deep dynamics model. To enhance the performance of the controller, the dynamics model is optimized within the deep reinforcement learning(DRL) framework. Simulation results verify that the proposed method can reduce frequency deviation and improve active power responses.
Thanks to its ubiquity,using radio frequency (RF) signals for sensing has found widespread *** traditional integrated sensing and communication systems,such as joint radar-communication systems,common sensing tasks in...
Thanks to its ubiquity,using radio frequency (RF) signals for sensing has found widespread *** traditional integrated sensing and communication systems,such as joint radar-communication systems,common sensing tasks include target localization and ***,increasingly intelligent systems,such as smart agriculture,lowaltitude economy,and smart healthcare,have demanded more comprehensive and continuous information sensing capabilities to support higher-level *** sensing has the potential to offer both spatial and temporal continuity,meeting the multi-dimensional sensing needs of these intelligent ***,numerous advanced systems have been proposed,expanding the application scope of RF sensing to be more pervasive,including discrete state ubiquitous sensing tasks (such as material identification [1]),and continuous state ubiquitous sensing tasks (such as health monitoring [2]).With the advent of the 6G era,it is anticipated that the sensing potential of RF systems will be further unleashed.
In edge computing, an Internet of Things (IoT) node may employ container-based virtualization to manage and process data collected by sensors. Compared to cloud computing, containers on edge computing nodes have more ...
详细信息
暂无评论