Predicting the best-quality of rice phenotypes is the priority among agricultural researchers to fulfill worldwide food security. Trend development of predictive models from statistics to machine learning is the subje...
详细信息
We study the problem of recovering a planted hierarchy of partitions in a network. The detectability of a single planted partition has previously been analyzed in detail and a phase transition has been identified belo...
详细信息
We study the problem of recovering a planted hierarchy of partitions in a network. The detectability of a single planted partition has previously been analyzed in detail and a phase transition has been identified below which the partition cannot be detected. Here we show that, in the hierarchical setting, there exist additional phases in which the presence of multiple consistent partitions can either help or hinder detection. Accordingly, the detectability limit for nonhierarchical partitions typically provides insufficient information about the detectability of the complete hierarchical structure, as we highlight with several constructive examples.
Agriculture, the backbone of many economies, faces challenges like lack of information, outdated practices, and limited access to technology, hindering farmer productivity. This work proposes a user-friendly, multilin...
详细信息
Agriculture, the backbone of many economies, faces challenges like lack of information, outdated practices, and limited access to technology, hindering farmer productivity. This work proposes a user-friendly, multilingual platform leveraging Generative AI to address farmers' diverse needs. The platform encompasses various features to enhance agricultural practices. An LLM-powered Government Scheme Advisor functions as a multilingual chatbot offering intelligent guidance on government agricultural schemes and subsidies. The Disease Detection module utilizes AI technology for real-time identification and treatment recommendations, minimizing crop diseases and yield losses. The Soil Testing Centre feature locates nearby soil testing centers, providing essential information based on geographical data to assist farmers in optimizing soil quality. A Crop Recommendation feature employs Machine Learning algorithms to offer personalized crop recommendations, considering various factors and aiding informed decision-making. The Crop Planning Tool, with its intuitive user interface, simplifies planning planting schedules and managing resources. Additionally, the platform includes an MSP Center Locator to find nearby Minimum Support Price (MSP) centers based on location. By integrating these innovative solutions, this platform bridges the gap between conventional agricultural techniques and contemporary technology, equipping farmers with the resources and expertise essential for advancing productivity and sustainability. Multilingual support ensures accessibility for a wider audience, breaking down language barriers and promoting inclusivity in the agricultural sector. This work proposes an innovative, multilingual platform powered by Generative AI to address these issues. Key features include an LLM-driven chatbot for government scheme guidance, AI-based real-time disease detection, and location-based tools for soil testing and MSP center identification. Additionally, the platf
In numerous industries, weather forecasting is essential for making informed decisions and mitigating the effects of extreme weather events. The complexity and chaos of weather systems, however, place restrictions on ...
详细信息
The application of reinforcement learning in traffic signal control (TSC) has been extensively researched and yielded notable achievements. However, most existing works for TSC assume that traffic data from all surrou...
This paper examines the submissions of various participating teams to the task on Hate and Offensive Language Detection in Telugu Codemixed Text (HOLD-Telugu) organized as part of DravidianLangTech 2024. In order to i...
The inefficient utilization of ubiquitous graph data with combinatorial structures necessitates graph embedding methods,aiming at learning a continuous vector space for the graph which is amenable to be adopted in tra...
详细信息
The inefficient utilization of ubiquitous graph data with combinatorial structures necessitates graph embedding methods,aiming at learning a continuous vector space for the graph which is amenable to be adopted in traditional machine learning algorithms in favor of vector *** embedding methods build an important bridge between social network analysis and data analytics as social networks naturally generate an unprecedented volume of graph data *** social network data not only bring benefit for public health,disaster response,commercial promotion,and many other applications,but also give birth to threats that jeopardize each individual’s privacy and ***,most existing works in publishing social graph embedding data only focus on preserving social graph structure with less attention paid to the privacy issues inherited from social *** be specific,attackers can infer the presence of a sensitive relationship between two individuals by training a predictive model with the exposed social network *** this paper,we propose a novel link-privacy preserved graph embedding framework using adversarial learning,which can reduce adversary’s prediction accuracy on sensitive links while persevering sufficient non-sensitive information such as graph topology and node attributes in graph *** experiments are conducted to evaluate the proposed framework using ground truth social network datasets.
In the evolving landscape of human-computer interaction, this paper introduces an innovative framework poised to revolutionize chatbot systems. Our framework, meticulously designed for emotionally aware multimodal cha...
详细信息
Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare *** of white blood cells(WBCs)in the blood or bone marrow microscopic slide images play ...
详细信息
Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare *** of white blood cells(WBCs)in the blood or bone marrow microscopic slide images play a crucial part in early identification to facilitate medical *** Acute Lymphocytic Leukemia(ALL),the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the whole body and the condition becomes *** researchers have done a lot of work in this field,to demonstrate a comprehensive analysis few literature reviews have been published focusing on various artificial intelligence-based techniques like machine and deep learning detection of *** systematic review has been done in this article under the PRISMA guidelines which presents the most recent advancements in this *** image segmentation techniques were broadly studied and categorized from various online databases like Google Scholar,science Direct,and PubMed as image processing-based,traditional machine and deep learning-based,and advanced deep learning-based models were *** Neural Networks(CNN)based on traditional models and then the recent advancements in CNN used for the classification of ALL into its subtypes.A critical analysis of the existing methods is provided to offer clarity on the current state of the ***,the paper concludes with insights and suggestions for future research,aiming to guide new researchers in the development of advanced automated systems for detecting life-threatening diseases.
Recently, research on denoising diffusion models has expanded its application to the field of image restoration. Traditional diffusion-based image restoration methods utilize degraded images as conditional input to ef...
暂无评论