Sign Language Production (SLP) aims to convert text or audio sentences into sign language videos corresponding to their semantics, which is challenging due to the diversity and complexity of sign languages, and cross-...
详细信息
作者:
Han, XinhuiPan, HaoyuanWang, ZhaoruiLi, JianqiangShenzhen University
College of Computer Science and Software Engineering Shenzhen518060 China
Future Network of Intelligence Institute School of Science and Engineering Shenzhen518172 China Shenzhen University
National Engineering Laboratory for Big Data System Computing Technology College of Computer Science and Software Engineering Shenzhen518060 China
We investigate the timely status update in linear multi-hop wireless networks, where a source tries to deliver status update packets to a destination through a sequence of half-duplex relays. Timeliness is measured by...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
Extensive studies have revealed that deep neural networks (DNNs) are vulnerable to adversarial attacks, especially black-box ones, which can heavily threaten the DNNs deployed in the real world. Many attack techniques...
详细信息
Extensive studies have revealed that deep neural networks (DNNs) are vulnerable to adversarial attacks, especially black-box ones, which can heavily threaten the DNNs deployed in the real world. Many attack techniques have been proposed to explore the vulnerability of DNNs and further help to improve their robustness. Despite the significant progress made recently, existing black-box attack methods still suffer from unsatisfactory performance due to the vast number of queries needed to optimize desired perturbations. Besides, the other critical challenge is that adversarial examples built in a noise-adding manner are abnormal and struggle to successfully attack robust models, whose robustness is enhanced by adversarial training against small perturbations. There is no doubt that these two issues mentioned above will significantly increase the risk of exposure and result in a failure to dig deeply into the vulnerability of DNNs. Hence, it is necessary to evaluate DNNs' fragility sufficiently under query-limited settings in a non-additional way. In this paper, we propose the Spatial Transform Black-box Attack (STBA), a novel framework to craft formidable adversarial examples in the query-limited scenario. Specifically, STBA introduces a flow field to the high-frequency part of clean images to generate adversarial examples and adopts the following two processes to enhance their naturalness and significantly improve the query efficiency: a) we apply an estimated flow field to the high-frequency part of clean images to generate adversarial examples instead of introducing external noise to the benign image, and b) we leverage an efficient gradient estimation method based on a batch of samples to optimize such an ideal flow field under query-limited settings. Compared to existing score-based black-box baselines, extensive experiments indicated that STBA could effectively improve the imperceptibility of the adversarial examples and remarkably boost the attack success rate u
Sharding is a promising technique to tackle the critical weakness of scalability in blockchain-based unmanned aerial vehicle(UAV)search and rescue(SAR)*** breaking up the blockchain network into smaller partitions cal...
详细信息
Sharding is a promising technique to tackle the critical weakness of scalability in blockchain-based unmanned aerial vehicle(UAV)search and rescue(SAR)*** breaking up the blockchain network into smaller partitions called shards that run independently and in parallel,shardingbased UAV systems can support a large number of search and rescue UAVs with improved scalability,thereby enhancing the rescue ***,the lack of adaptability and interoperability still hinder the application of sharded blockchain in UAV SAR *** refers to making adjustments to the blockchain towards real-time surrounding situations,while interoperability refers to making cross-shard interactions at the mission *** address the above challenges,we propose a blockchain UAV system for SAR missions based on dynamic sharding *** from the benefits in scalability brought by sharding,our system improves adaptability by dynamically creating configurable and mission-exclusive shards,and improves interoperability by supporting calls between smart contracts that are deployed on different *** implement a prototype of our system based on Quorum,give an analysis of the improved adaptability and interoperability,and conduct experiments to evaluate the *** results show our system can achieve the above goals and overcome the weakness of blockchain-based UAV systems in SAR scenarios.
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy *** research emphasizes data security and user privacy conce...
详细信息
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy *** research emphasizes data security and user privacy concerns within smart ***,existing methods struggle with efficiency and security when processing large-scale *** efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent *** paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data *** approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user *** also explores the application of Boneh Lynn Shacham(BLS)signatures for user *** proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis.
In the field of heterogeneous federated learning (FL), the key challenge is to efficiently and collaboratively train models across multiple clients with different data distributions, model structures, task objectives,...
详细信息
With the rapid development of social media, sentiment analysis from multimodal posts has garnered significant attention in recent years. However, the substantial size of these models impedes their deployment on resour...
详细信息
Artificial intelligence has significantly revolutionized healthcare, particularly through large language models (LLMs) that demonstrate superior performance in static medical question answering benchmarks. However, ev...
详细信息
Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and testing data by adapting a given model w.r.t. any testing sample. This task is particularly important when the test environ...
详细信息
Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and testing data by adapting a given model w.r.t. any testing sample. This task is particularly important when the test environment changes frequently. Although some recent attempts have been made to handle this task, we still face two key challenges: 1) prior methods have to perform backpropagation for each test sample, resulting in unbearable optimization costs to many applications;2) while existing TTA solutions can significantly improve the test performance on out-of-distribution data, they often suffer from severe performance degradation on in-distribution data after TTA (known as catastrophic forgetting). To this end, we have proposed an Efficient Anti-Forgetting Test-Time Adaptation (EATA) method which develops an active sample selection criterion to identify reliable and non-redundant samples for test-time entropy minimization. To alleviate forgetting, EATA introduces a Fisher regularizer estimated from test samples to constrain important model parameters from drastic changes. However, in EATA, the adopted entropy loss consistently assigns higher confidence to predictions even when the samples are underlying uncertain, leading to overconfident predictions that underestimate the data uncertainty. To tackle this, we further propose EATA with Calibration (EATA-C) to separately exploit the reducible model uncertainty and the inherent data uncertainty for calibrated TTA. Specifically, we compare the divergence between predictions from the full network and its sub-networks to measure the reducible model uncertainty, on which we propose a test-time uncertainty reduction strategy with divergence minimization loss to encourage consistent predictions instead of overconfident ones. To further re-calibrate predicting confidence on different samples, we utilize the disagreement among predicted labels as an indicator of the data uncertainty. Based on this, we devise a min-max entropy
暂无评论