咨询与建议

限定检索结果

文献类型

  • 897 篇 期刊文献
  • 775 篇 会议
  • 10 册 图书

馆藏范围

  • 1,682 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,145 篇 工学
    • 843 篇 计算机科学与技术...
    • 715 篇 软件工程
    • 246 篇 信息与通信工程
    • 153 篇 生物工程
    • 130 篇 电气工程
    • 128 篇 控制科学与工程
    • 105 篇 化学工程与技术
    • 85 篇 机械工程
    • 85 篇 生物医学工程(可授...
    • 84 篇 电子科学与技术(可...
    • 79 篇 光学工程
    • 42 篇 动力工程及工程热...
    • 35 篇 网络空间安全
    • 34 篇 安全科学与工程
    • 30 篇 建筑学
    • 29 篇 交通运输工程
  • 539 篇 理学
    • 303 篇 数学
    • 165 篇 生物学
    • 100 篇 统计学(可授理学、...
    • 90 篇 物理学
    • 52 篇 系统科学
    • 45 篇 化学
  • 336 篇 管理学
    • 206 篇 管理科学与工程(可...
    • 145 篇 图书情报与档案管...
    • 97 篇 工商管理
  • 69 篇 医学
    • 60 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 33 篇 公共卫生与预防医...
  • 47 篇 法学
    • 36 篇 社会学
  • 39 篇 经济学
    • 37 篇 应用经济学
  • 23 篇 农学
  • 19 篇 教育学
  • 7 篇 军事学
  • 4 篇 艺术学
  • 3 篇 文学

主题

  • 52 篇 semantics
  • 51 篇 feature extracti...
  • 50 篇 deep learning
  • 47 篇 training
  • 32 篇 accuracy
  • 32 篇 data models
  • 28 篇 computational mo...
  • 28 篇 machine learning
  • 25 篇 optimization
  • 25 篇 predictive model...
  • 24 篇 convolution
  • 23 篇 internet of thin...
  • 23 篇 federated learni...
  • 22 篇 graph neural net...
  • 22 篇 convolutional ne...
  • 21 篇 conferences
  • 20 篇 blockchain
  • 19 篇 reinforcement le...
  • 19 篇 deep neural netw...
  • 18 篇 cloud computing

机构

  • 108 篇 school of big da...
  • 58 篇 college of compu...
  • 58 篇 school of big da...
  • 45 篇 national enginee...
  • 43 篇 school of inform...
  • 40 篇 state key labora...
  • 40 篇 shenzhen researc...
  • 39 篇 school of softwa...
  • 32 篇 school of softwa...
  • 31 篇 school of data a...
  • 30 篇 school of comput...
  • 29 篇 school of data s...
  • 28 篇 college of compu...
  • 25 篇 school of comput...
  • 25 篇 college of compu...
  • 24 篇 school of cyber ...
  • 23 篇 school of data s...
  • 22 篇 school of softwa...
  • 20 篇 school of comput...
  • 20 篇 college of compu...

作者

  • 32 篇 shi qingjiang
  • 28 篇 shi yinghuan
  • 26 篇 gao yang
  • 23 篇 shen linlin
  • 23 篇 lan li
  • 21 篇 qi lei
  • 18 篇 qingjiang shi
  • 16 篇 hu shengshan
  • 16 篇 mahmood khalid
  • 16 篇 li minghui
  • 14 篇 xiuhua li
  • 14 篇 zhang hongyu
  • 14 篇 li xiuhua
  • 13 篇 tao dacheng
  • 13 篇 jin hai
  • 13 篇 hu chunqiang
  • 12 篇 xu xiaolong
  • 12 篇 zhou ziqi
  • 12 篇 shamshad salman
  • 12 篇 du bo

语言

  • 1,522 篇 英文
  • 147 篇 其他
  • 19 篇 中文
检索条件"机构=School of Data Science and Software Engineering"
1682 条 记 录,以下是1051-1060 订阅
排序:
A novel hybrid ensemble approach for wind speed forecasting with dual-stage decomposition strategy using optimized GRU and transformer models
收藏 引用
Energy 2025年 329卷
作者: Ullah, Sajid Chen, Xi Han, Han Wu, Junhao Dong, Jinghan Liu, Ruiqing Ding, Weijie Liu, Min Li, Qingli Qi, Honggang Huang, Yonggui Yu, Philip Lh East China Normal University Shanghai200241 China School of Geographic Sciences East China Normal University Shanghai200241 China Software Engineering Institute East China Normal University Shanghai200026 China State Key Laboratory of Estuarine and Coastal Research East China Normal University Shanghai200241 China Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University Shanghai200241 China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing100049 China Peking University Chongqing Research Institute of Big Data Chongqing High-tech Zone Science Valley Building 10 China Department of Mathematics and Information Technology The Education University of Hong Kong Hong Kong
Wind energy has attracted global interest owing to its sustainable and environmentally friendly characteristics. Nevertheless, precisely forecasting wind speed can be challenging due to its volatile and unpredictable ... 详细信息
来源: 评论
DFPL: Decentralized Federated Prototype Learning Across Heterogeneous data Distributions
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Hongliang Xu, Fenghua Yu, Zhongyuan Hu, Chunqiang Pang, Shanchen Wang, Xiaofen Yu, Jiguo School of Computer Science and Technology Qilu University of Technology Shandong Jinan250353 China Cyber Security Institute University of Science and Technology of China Anhui Hefei230026 China School of Information Science and Engineering Lanzhou University Gansu Lanzhou730000 China School of Big Data and Software Engineering Chongqing University Chongqing400044 China Shandong Qingdao266580 China School of Computer Science and Engineering University of Electronic Science and Technology of China Sichuan Chengdu611731 China
Federated learning is a distributed machine learning paradigm that enables the collaborative training of multiple clients through centralized model aggregation. However, standard federated learning relies on a central... 详细信息
来源: 评论
Digital Twin-Assisted Space-Air-Ground Integrated Multi-Access Edge Computing for Low-Altitude Economy: An Online Decentralized Optimization Approach
arXiv
收藏 引用
arXiv 2024年
作者: He, Long Sun, Geng Sun, Zemin Wang, Jiacheng Du, Hongyang Niyato, Dusit Liu, Jiangchuan Leung, Victor C.M. College of Computer Science and Technology Jilin University Changchun130012 China College of Computing and Data Science Nanyang Technological University Singapore639798 Singapore Department of Electrical and Electronic Engineering University of Hong Kong Pok Fu Lam Hong Kong School of Computing Science Simon Fraser University BurnabyBCV5A 1S6 Canada R&D Department Jiangxing Intelligence Inc. Nanjing210000 China Artificial Intelligence Research Institute Shenzhen MSU-BIT University Shenzhen518115 China College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Department of Electrical and Computer Engineering The University of British Columbia VancouverV6T 1Z4 Canada
The emergence of space-air-ground integrated multi-access edge computing (SAGIMEC) networks opens a significant opportunity for the rapidly growing low altitude economy (LAE), facilitating the development of various a... 详细信息
来源: 评论
CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Xu Hou, XianXu Lai, Zhihui Zhou, Jie Zhang, Ya-Nan Pedrycz, Witold Shen, Linlin The Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China School of AI and Advanced Computing Xi’an Jiaotong-Liverpool University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Shenzhen518060 China The Department of Electrical & Computer Engineering University of Alberta University of Alberta Canada
Low-light image enhancement (LLIE) aims to improve low-illumination images. However, existing methods face two challenges: (1) uncertainty in restoration from diverse brightness degradations;(2) loss of texture and co... 详细信息
来源: 评论
Cooperative Sensing and Heterogeneous Information Fusion in VCPS: A Multi-agent Deep Reinforcement Learning Approach
arXiv
收藏 引用
arXiv 2022年
作者: Xu, Xincao Liu, Kai Dai, Penglin Xie, Ruitao Cao, Jingjing Luo, Jiangtao The College of Computer Science Chongqing University Chongqing400040 China The School of Computing and Artificial Intelligence Southwest Jiaotong University Chengdu611756 China The National Engineering Laboratory of Integrated Transportation Big Data Application Technology Chengdu611756 China The College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China The School of Transportation and Logistics Engineering Wuhan University of Technology Hubei430063 China The Electronic Information and Networking Research Institute Chongqing University of Posts and Telecommunications Chongqing400065 China
Cooperative sensing and heterogeneous information fusion are critical to realize vehicular cyber-physical systems (VCPSs). This paper makes the first attempt to quantitatively measure the quality of VCPS by designing ... 详细信息
来源: 评论
Correction: Uncertainty Modelling in Performability Prediction for Safety-Critical Systems
收藏 引用
Arabian Journal for science and engineering 2024年 第2期50卷 1353-1353页
作者: Ahamad, Shakeel Gupta, Ratneshwer Department of Data Science Noida Institute of Engineering and Technology Greater Noida India Software Quality Assurance Lab School of Computer and Systems Sciences Jawaharlal Nehru University New Delhi India
来源: 评论
Attentive Prototype Few-Shot Learning with Capsule Network-Based Embedding  1
收藏 引用
16th European Conference on Computer Vision, ECCV 2020
作者: Wu, Fangyu Smith, Jeremy S. Lu, Wenjin Pang, Chaoyi Zhang, Bailing Department of Computer Science and Software Engineering Xi’an Jiaotong-liverpool University SuZhouJiangSu Province China Department of Electrical Engineering and Electronic University of Liverpool Liverpool United Kingdom School of Computer and Data Engineering Zhejiang University Ningbo Institute of Technology NingboZhejiang Province China
Few-shot learning, namely recognizing novel categories with a very small amount of training examples, is a challenging area of machine learning research. Traditional deep learning methods require massive training data... 详细信息
来源: 评论
Collaborative Filtering Recommendation Algorithm Based on Multi-relationship Social Network
收藏 引用
Ingenierie des Systemes d'Information 2020年 第3期25卷 359-364页
作者: Liu, Yue Yang, Hua Sun, Gengxin Bin, Sheng Institute of Information Engineering Kaifeng University Kaifeng475000 China School of Data Science and Software Engineering Qingdao University Qingdao266071 China
For solving the data sparsity of traditional algorithms, this paper proposes a novel collaborative filtering recommendation algorithm based on multi-relationship social network. On the basis of traditional matrix deco... 详细信息
来源: 评论
Privacy-Preserving Federated Foundation Model for Generalist Ultrasound Artificial Intelligence
arXiv
收藏 引用
arXiv 2024年
作者: Jiang, Yuncheng Feng, Chun-Mei Ren, Jinke Wei, Jun Zhang, Zixun Hu, Yiwen Liu, Yunbi Sun, Rui Tang, Xuemei Du, Juan Wan, Xiang Xu, Yong Du, Bo Gao, Xin Wang, Guangyu Zhou, Shaohua Cui, Shuguang Goh, Rick Siow Mong Liu, Yong Li, Zhen Shenzhen518172 China Shenzhen518172 China Institute of High Performance Computing Agency for Science Technology and Research Singapore138632 Singapore College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Research Institute of Big Data Shenzhen518172 China South China Hospital Health Science Center Shenzhen University Shenzhen518111 China School of Computer Science Nanjing University of Posts and Telecommunications Nanjing210023 China Affiliated Hospital of North Sichuan Medical College Sichuan637000 China North Sichuan Medical College Sichuan637000 China Shenzhen518055 China School of Computer Science Wuhan University Wuhan430072 China Thuwal23955-6900 Saudi Arabia Thuwal23955-6900 Saudi Arabia Beijing University of Posts and Telecommunications Beijing100876 China School of Biomedical Engineering Suzhou Institute for Advanced Research University of Science and Technology of China Suzhou215123 China Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China
Ultrasound imaging is widely used in clinical diagnosis due to its non-invasive nature and real-time capabilities. However, conventional ultrasound diagnostics face several limitations, including high dependence on ph... 详细信息
来源: 评论
Generalizable Cross-modality Medical Image Segmentation via Style Augmentation and Dual Normalization
arXiv
收藏 引用
arXiv 2021年
作者: Zhou, Ziqi Qi, Lei Yang, Xin Ni, Dong Shi, Yinghuan The State Key Laboratory for Novel Software Technology National Institute of Healthcare Data Science Nanjing University China The School of Computer Science and Engineering Southeast University China National-Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering Health Science Center The Medical Ultrasound Image Computing Lab The Marshall Laboratory of Biomedical Engineering Shenzhen University China
For medical image segmentation, imagine if a model was only trained using MR images in source domain, how about its performance to directly segment CT images in target domain? This setting, namely generalizable cross-... 详细信息
来源: 评论