咨询与建议

限定检索结果

文献类型

  • 897 篇 期刊文献
  • 775 篇 会议
  • 10 册 图书

馆藏范围

  • 1,682 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,145 篇 工学
    • 843 篇 计算机科学与技术...
    • 715 篇 软件工程
    • 246 篇 信息与通信工程
    • 153 篇 生物工程
    • 130 篇 电气工程
    • 128 篇 控制科学与工程
    • 105 篇 化学工程与技术
    • 85 篇 机械工程
    • 85 篇 生物医学工程(可授...
    • 84 篇 电子科学与技术(可...
    • 79 篇 光学工程
    • 42 篇 动力工程及工程热...
    • 35 篇 网络空间安全
    • 34 篇 安全科学与工程
    • 30 篇 建筑学
    • 29 篇 交通运输工程
  • 539 篇 理学
    • 303 篇 数学
    • 165 篇 生物学
    • 100 篇 统计学(可授理学、...
    • 90 篇 物理学
    • 52 篇 系统科学
    • 45 篇 化学
  • 336 篇 管理学
    • 206 篇 管理科学与工程(可...
    • 145 篇 图书情报与档案管...
    • 97 篇 工商管理
  • 69 篇 医学
    • 60 篇 临床医学
    • 55 篇 基础医学(可授医学...
    • 33 篇 公共卫生与预防医...
  • 47 篇 法学
    • 36 篇 社会学
  • 39 篇 经济学
    • 37 篇 应用经济学
  • 23 篇 农学
  • 19 篇 教育学
  • 7 篇 军事学
  • 4 篇 艺术学
  • 3 篇 文学

主题

  • 52 篇 semantics
  • 51 篇 feature extracti...
  • 50 篇 deep learning
  • 47 篇 training
  • 32 篇 accuracy
  • 32 篇 data models
  • 28 篇 computational mo...
  • 28 篇 machine learning
  • 25 篇 optimization
  • 25 篇 predictive model...
  • 24 篇 convolution
  • 23 篇 internet of thin...
  • 23 篇 federated learni...
  • 22 篇 graph neural net...
  • 22 篇 convolutional ne...
  • 21 篇 conferences
  • 20 篇 blockchain
  • 19 篇 reinforcement le...
  • 19 篇 deep neural netw...
  • 18 篇 cloud computing

机构

  • 108 篇 school of big da...
  • 58 篇 college of compu...
  • 58 篇 school of big da...
  • 45 篇 national enginee...
  • 43 篇 school of inform...
  • 40 篇 state key labora...
  • 40 篇 shenzhen researc...
  • 39 篇 school of softwa...
  • 32 篇 school of softwa...
  • 31 篇 school of data a...
  • 30 篇 school of comput...
  • 29 篇 school of data s...
  • 28 篇 college of compu...
  • 25 篇 school of comput...
  • 25 篇 college of compu...
  • 24 篇 school of cyber ...
  • 23 篇 school of data s...
  • 22 篇 school of softwa...
  • 20 篇 school of comput...
  • 20 篇 college of compu...

作者

  • 32 篇 shi qingjiang
  • 28 篇 shi yinghuan
  • 26 篇 gao yang
  • 23 篇 shen linlin
  • 23 篇 lan li
  • 21 篇 qi lei
  • 18 篇 qingjiang shi
  • 16 篇 hu shengshan
  • 16 篇 mahmood khalid
  • 16 篇 li minghui
  • 14 篇 xiuhua li
  • 14 篇 zhang hongyu
  • 14 篇 li xiuhua
  • 13 篇 tao dacheng
  • 13 篇 jin hai
  • 13 篇 hu chunqiang
  • 12 篇 xu xiaolong
  • 12 篇 zhou ziqi
  • 12 篇 shamshad salman
  • 12 篇 du bo

语言

  • 1,522 篇 英文
  • 147 篇 其他
  • 19 篇 中文
检索条件"机构=School of Data Science and Software Engineering"
1682 条 记 录,以下是1111-1120 订阅
排序:
A Recommender System Based on Model Regularization Wasserstein Generative Adversarial Network*
A Recommender System Based on Model Regularization Wasserste...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Qingxian Wang Qing Huang Kangkang Ma Xuerui Zhang School of Information and Software Engineering University of Electronic Science and Technology of China Chengdu China Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
A recommender system (RS) commonly adopts a High-dimensional and sparse (HiDS) matrix to describe user-item preferences. Collaborative Filtering (CF)-based models have been widely adopted to address such an HiDS matri... 详细信息
来源: 评论
Semantics Analytics of Origin-Destination Flows from Crowd Sensed Big data
收藏 引用
Computers, Materials & Continua 2019年 第7期61卷 227-241页
作者: Ning Cao Shengfang Li Keyong Shen Sheng Bin Gengxin Sun Dongjie Zhu Xiuli Han Guangsheng Cao Abraham Campbell College of Computer Information and Engineering Nanchang Institute of TechnologyNanchangChina College of Information Engineering Sanming UniversitySanmingChina School of Data Science and Software Engineering Qingdao UniversityQingdaoChina School of Computer Science and Technology Harbin Institute of TechnologyWeihaiChina Public Teaching Department Qingdao Technical CollegeQingdaoChina School of Computer Science University College DublinDublinIreland
Monitoring,understanding and predicting Origin-destination(OD)flows in a city is an important problem for city planning and human ***-GPS traces,acted as one kind of typical crowd sensed data,it can be used to mine th... 详细信息
来源: 评论
Artificial intelligence for modelling infectious disease epidemics
收藏 引用
Nature 2025年 第8051期638卷 623-635页
作者: Kraemer, Moritz U. G. Tsui, Joseph L.-H. Chang, Serina Y. Lytras, Spyros Khurana, Mark P. Vanderslott, Samantha Bajaj, Sumali Scheidwasser, Neil Curran-Sebastian, Jacob Liam Semenova, Elizaveta Zhang, Mengyan Unwin, H. Juliette T. Watson, Oliver J. Mills, Cathal Dasgupta, Abhishek Ferretti, Luca Scarpino, Samuel V. Koua, Etien Morgan, Oliver Tegally, Houriiyah Paquet, Ulrich Moutsianas, Loukas Fraser, Christophe Ferguson, Neil M. Topol, Eric J. Duchêne, David A. Stadler, Tanja Kingori, Patricia Parker, Michael J. Dominici, Francesca Shadbolt, Nigel Suchard, Marc A. Ratmann, Oliver Flaxman, Seth Holmes, Edward C. Gomez-Rodriguez, Manuel Schölkopf, Bernhard Donnelly, Christl A. Pybus, Oliver G. Cauchemez, Simon Bhatt, Samir Pandemic Sciences Institute University of Oxford Oxford United Kingdom Department of Biology University of Oxford Oxford United Kingdom Department of Electrical Engineering and Computer Science University of California Berkeley Berkeley CA United States UCSF UC Berkeley Joint Program in Computational Precision Health Berkeley CA United States Division of Systems Virology Department of Microbiology and Immunology The Institute of Medical Science The University of Tokyo Tokyo Japan Section of Epidemiology Department of Public Health University of Copenhagen Copenhagen Denmark Oxford Vaccine Group University of Oxford and NIHR Oxford Biomedical Research Centre Oxford United Kingdom Department of Epidemiology and Biostatistics Imperial College London London United Kingdom Department of Computer Science University of Oxford Oxford United Kingdom School of Mathematics University of Bristol Bristol United Kingdom MRC Centre for Global Infectious Disease Analysis School of Public Health Imperial College London London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Doctoral Training Centre University of Oxford Oxford United Kingdom Institute for Experiential AI Northeastern University MA Boston Thailand Santa Fe Institute Santa Fe NM United States World Health Organization Regional Office for Africa Brazzaville Congo WHO Hub for Pandemic and Epidemic Intelligence Health Emergencies Programme World Health Organization Berlin Germany Centre for Epidemic Response and Innovation (CERI) School for Data Science and Computational Thinking Stellenbosch University Stellenbosch South Africa African Institute for Mathematical Sciences (AIMS) South Africa Muizenberg Cape Town South Africa Genomics England London United Kingdom Scripps Research La Jolla CA United States Department of Biosystems Science and Engineering ETH Zürich Basel Switzerland Swiss Institute of Bioinformatics Lausanne Switzerland The Ethox Centre Nuffield
Infectious disease threats to individual and public health are numerous, varied and frequently unexpected. Artificial intelligence (AI) and related technologies, which are already supporting human decision making in e...
来源: 评论
Diminished Mitigating Effect of Vegetation on Surface Urban Heat Islands in Large Cities
SSRN
收藏 引用
SSRN 2023年
作者: Deng, Xiangyi Yu, Wenping Shi, Jinan Huang, Yajun Li, Dandan He, Xuanwei Zhou, Wei Xie, Zunyi Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station School of Geographical Science Southwest University No. 2 Tiansheng Road Beibei District Chongqing400715 China Yibin Academy of Southwest University Sichuan Yibin644000 China Chongqing Engineering Research Center for Remote Sensing Big Data Application Southwest University Chongqing400715 China Software Engineering Institute Pass College of Chongqing Technology and Business University No. 593 Jiaotong Road Hechuan District Chongqing401520 China College of Geography and Environmental Science Henan University Kaifeng475004 China School of Environment The University of Queensland BrisbaneQLD4072 Australia
Given the increasing severity of the surface urban heat island (SUHI) phenomenon, urban residents face heightened heat stress. Consequently, mitigating the effects of SUHI becomes critically important to improve urban... 详细信息
来源: 评论
Boosting Connectivity in Retinal Vessel Segmentation via a Recursive Semantics-Guided Network  23rd
Boosting Connectivity in Retinal Vessel Segmentation via a R...
收藏 引用
23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
作者: Xu, Rui Liu, Tiantian Ye, Xinchen Lin, Lin Chen, Yen-Wei DUT-RU International School of Information Science and Engineering Dalian University of Technology Dalian China DUT-RU Co-Research Center of Advanced ICT for Active Life Dalian China Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province Dalian China College of Software Dalian University of Technology Dalian China College of Information Science and Engineering Ritsumeikan University Kusatsu Japan Research Center of Healthcare Data Science Zhejiang Lab Hangzhou China
Many deep learning based methods have been proposed for retinal vessel segmentation, however few of them focus on the connectivity of segmented vessels, which is quite important for a practical computer-aided diagnosi... 详细信息
来源: 评论
Modeling and Simulation of Infectious Propagation Based on Cellular Automata
Modeling and Simulation of Infectious Propagation Based on C...
收藏 引用
2019 IEEE Eurasia Conference on Biomedical engineering, Healthcare and Sustainability, ECBIOS 2019
作者: Zhou, Shuang Bin, Sheng Sun, Gengxin Qingdao University School of Data Science and Software Engineering No.308 Ningxia Rd Qingdao Qingdao Shandong China
Based on cellular automaton, combine compartment model, proposed SEIDRS model that can reflect the actual propagation process of infectious diseases. This model combined with factors such as population density, sexual... 详细信息
来源: 评论
A Survey on Temporal Knowledge Graph Completion: Taxonomy, Progress, and Prospects
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Jiapu Wang, Boyue Qiu, Meikang Pan, Shirui Xiong, Bo Liu, Heng Luo, Linhao Liu, Tengfei Hu, Yongli Yin, Baocai Gao, Wen Beijing Municipal Key Lab of Multimedia and Intelligent Software Technology Beijing Artificial Intelligence Institute Faculty of Information Technology Beijing University of Technology Beijing100124 China The Beacom College of Computer and Cyber Sciences Dakota State University MadisonSD United States Griffith University QLD Australia The Department of Computer Science University of Stuttgart Stuttgart70569 Germany The Department of Data Science and AI Monash University Melbourne Australia The Institute of Digital Media Peking University Beijing100871 China The School of Electronic and Computer Engineering Peking University Shenzhen Graduate School Shenzhen518055 China
Temporal characteristics are prominently evident in a substantial volume of knowledge, which underscores the pivotal role of Temporal Knowledge Graphs (TKGs) in both academia and industry. However, TKGs often suffer f... 详细信息
来源: 评论
MERITS: Medication Recommendation for Chronic Disease with Irregular Time-Series
MERITS: Medication Recommendation for Chronic Disease with I...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Shuai Zhang Jianxin Li Haoyi Zhou Qishan Zhu Shanghang Zhang Danding Wang Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University China School of Computer Science and Engineering Beihang University China Shenyuan Honors College Beihang University China School of Software Beihang University China National University of Singapore >Singapore
Medication recommendation for chronic diseases based on the complex historical electronic medical records (EMR) is an important and challenging research problem in medical informatics because the medical records are o... 详细信息
来源: 评论
Getting Ready for the European Health data Space (Ehds): The Iderha's Plan to Align with the Ehds Requirements for the Secondary Use of Health data
SSRN
收藏 引用
SSRN 2024年
作者: Hussein, Rada Balaur, Irina Burmann, Anja Ćwiek-Kupczyńska, Hanna Gadiya, Yojana Ghosh, Soumyabrata Jayathissa, Prabath Katsch, Florian Kremer, Andreas Lähteenmäki, Jaakko Meng, Zhaoling Morasek, Kathrin Rancourt, Rebecca C. Satagopam, Venkata Sauermann, Stefan Scheider, Simon Stamm, Tanja A. Muehlendyck, Christian Gribbon, Philip Ludwig Boltzmann Institute for Digital Health and Prevention Salzburg Austria Luxembourg Centre for Systems Biology University of Luxembourg Luxembourg Fraunhofer Institute for Software and Systems Engineering Dortmund Germany Discovery Research Screening Port Hamburg Germany Theodor Stern Kai 7 Frankfurt60590 Germany Bonn-Aachen International Center for Information Technology University of Bonn Bonn Germany Center for Medical Data Science Medical University of Vienna Vienna Austria ITTM S.A. Luxembourg VTT Technical Research Centre of Finland Ltd Espoo Finland Clinical Modeling and Evidence Integration Sanofi CambridgeMA United States Institute of Outcomes Research Center for Medical Data Science Medical University of Vienna Austria Ludwig Boltzmann Institute for Arthritis and Rehabilitation Vienna Austria Medical School Berlin Berlin Germany Faculty Life Science Engineering FH Technikum Wien Vienna Austria TU Dortmund Dortmund Germany Johnson & Johnson Medical GmbH Norderstedt Germany
Objective: The European Health data Space (EHDS) shapes the digital transformation of healthcare in Europe. The EHDS regulations will also accelerate the use of health data for research, innovation, policy-making, and... 详细信息
来源: 评论
Test-Time Domain Adaptation by Learning Domain-Aware Batch Normalization
arXiv
收藏 引用
arXiv 2023年
作者: Wu, Yanan Chi, Zhixiang Wang, Yang Plataniotis, Konstantinos N. Feng, Songhe Key Laboratory of Big Data & Artificial Intelligence in Transportation Ministry of Education Beijing Jiaotong University Beijing100044 China School of Computer and Information Technology Beijing Jiaotong University Beijing100044 China The Edward S Rogers Sr. ECE Department University of Toronto TorontoM5S3G8 Canada Department of Computer Science and Software Engineering Concordia University MontrealH3G2J1 Canada
Test-time domain adaptation aims to adapt the model trained on source domains to unseen target domains using a few unlabeled images. Emerging research has shown that the label and domain information is separately embe... 详细信息
来源: 评论