Test-time compute is emerging as a new paradigm for enhancing language models’ complex multi-step reasoning capabilities, as demonstrated by the success of OpenAI’s o1 and o3, as well as DeepSeek’s R1. Compared to ...
详细信息
Wireless sensor networks have great potential for use in flood control, weather forecasting systems, the military, and the healthcare industry. A WSN's nodes are connected to one another and share information. Whe...
详细信息
In this paper, we propose efficient distributed algorithms for three holistic aggregation functions on random regular graphs that are good candidates for network topology in next-generation data *** three holistic agg...
详细信息
In this paper, we propose efficient distributed algorithms for three holistic aggregation functions on random regular graphs that are good candidates for network topology in next-generation data *** three holistic aggregation functions include SELECTION(select the k-th largest or smallest element),DISTINCT(query the count of distinct elements), MODE(query the most frequent element). We design three basic techniques — Pre-order Network Partition, Pairwise-independent Random Walk, and Random Permutation Delivery, and devise the algorithms based on the techniques. The round complexity of the distributed SELECTION is Θ(log N) which meets the lower bound where N is the number of nodes and each node holds a numeric element. The round complexity of the distributed DISTINCT and MODE algorithms are O(log3N/log log N) and O(log2N log log N) respectively. All of our results break the lower bounds obtained on general graphs and our distributed algorithms are all based on the CON GE S T model, which restricts each node to send only O(log N) bits on each edge in one round under synchronous communications.
Sharding is a promising technique to tackle the critical weakness of scalability in blockchain-based unmanned aerial vehicle(UAV)search and rescue(SAR)*** breaking up the blockchain network into smaller partitions cal...
详细信息
Sharding is a promising technique to tackle the critical weakness of scalability in blockchain-based unmanned aerial vehicle(UAV)search and rescue(SAR)*** breaking up the blockchain network into smaller partitions called shards that run independently and in parallel,shardingbased UAV systems can support a large number of search and rescue UAVs with improved scalability,thereby enhancing the rescue ***,the lack of adaptability and interoperability still hinder the application of sharded blockchain in UAV SAR *** refers to making adjustments to the blockchain towards real-time surrounding situations,while interoperability refers to making cross-shard interactions at the mission *** address the above challenges,we propose a blockchain UAV system for SAR missions based on dynamic sharding *** from the benefits in scalability brought by sharding,our system improves adaptability by dynamically creating configurable and mission-exclusive shards,and improves interoperability by supporting calls between smart contracts that are deployed on different *** implement a prototype of our system based on Quorum,give an analysis of the improved adaptability and interoperability,and conduct experiments to evaluate the *** results show our system can achieve the above goals and overcome the weakness of blockchain-based UAV systems in SAR scenarios.
Due to their low power consumption and limited computing power,Internet of Things(IoT)devices are difficult to ***,the rapid growth of IoT devices in homes increases the risk of *** detection systems(IDS)are commonly ...
详细信息
Due to their low power consumption and limited computing power,Internet of Things(IoT)devices are difficult to ***,the rapid growth of IoT devices in homes increases the risk of *** detection systems(IDS)are commonly employed to prevent *** systems detect incoming attacks and instantly notify users to allow for the implementation of appropriate *** have been made in the past to detect new attacks using machine learning and deep learning techniques,however,these efforts have been *** this paper,we propose two deep learning models to automatically detect various types of intrusion attacks in IoT ***,we experimentally evaluate the use of two Convolutional Neural Networks(CNN)to detect nine distinct types of attacks listed in the NF-UNSW-NB15-v2 *** accomplish this goal,the network stream data were initially converted to twodimensional images,which were then used to train the neural network *** also propose two baseline models to demonstrate the performance of the proposed ***,both models achieve high accuracy in detecting the majority of these nine attacks.
COVID-19 is a ribonucleic acid virus with a high mutation frequency and will continue to mutate as time goes on. At the same time, the number of antibodies in the human body will gradually decrease with time. This pap...
详细信息
The key-value separation is renowned for its significant mitigation of the write amplification inherent in traditional LSM trees. However, KV separation potentially increases performance overhead in the management of ...
详细信息
Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting, computational fluid dynamics, and artificial intelligence. However, effective and accurate rep...
详细信息
The speaker extraction technique seeks to single out the voice of a target speaker from the interfering voices in a speech mixture. Typically an auxiliary reference of the target speaker is used to form voluntary atte...
详细信息
Broad Learning System (BLS) perform well in classification tasks with good computational efficiency. However, its effectiveness decreases when faced with imbalanced data distribution. The traditional BLS cannot solve ...
详细信息
暂无评论