咨询与建议

限定检索结果

文献类型

  • 161 篇 期刊文献
  • 87 篇 会议

馆藏范围

  • 248 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 192 篇 工学
    • 148 篇 计算机科学与技术...
    • 129 篇 软件工程
    • 61 篇 信息与通信工程
    • 23 篇 电气工程
    • 23 篇 生物工程
    • 18 篇 电子科学与技术(可...
    • 15 篇 控制科学与工程
    • 13 篇 光学工程
    • 11 篇 机械工程
    • 10 篇 生物医学工程(可授...
    • 10 篇 网络空间安全
    • 7 篇 化学工程与技术
    • 5 篇 仪器科学与技术
    • 5 篇 土木工程
    • 5 篇 安全科学与工程
    • 4 篇 动力工程及工程热...
  • 81 篇 理学
    • 44 篇 数学
    • 26 篇 生物学
    • 16 篇 物理学
    • 14 篇 统计学(可授理学、...
    • 9 篇 化学
    • 5 篇 系统科学
  • 53 篇 管理学
    • 31 篇 图书情报与档案管...
    • 24 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 13 篇 法学
    • 7 篇 社会学
    • 6 篇 法学
  • 9 篇 医学
    • 7 篇 基础医学(可授医学...
    • 7 篇 临床医学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 3 篇 农学
  • 1 篇 军事学

主题

  • 11 篇 semantics
  • 8 篇 convolution
  • 7 篇 deep neural netw...
  • 7 篇 decoding
  • 7 篇 training
  • 6 篇 object detection
  • 6 篇 feature extracti...
  • 5 篇 cameras
  • 5 篇 optimization
  • 5 篇 machine learning
  • 5 篇 steganography
  • 5 篇 federated learni...
  • 4 篇 image enhancemen...
  • 4 篇 contrastive lear...
  • 4 篇 encoding
  • 4 篇 deep reinforceme...
  • 3 篇 gamma-gamma chan...
  • 3 篇 deep learning
  • 3 篇 task analysis
  • 3 篇 clustering algor...

机构

  • 39 篇 school of data a...
  • 23 篇 key laboratory o...
  • 22 篇 guangdong key la...
  • 21 篇 school of comput...
  • 17 篇 peng cheng labor...
  • 17 篇 guangdong provin...
  • 15 篇 school of comput...
  • 15 篇 school of electr...
  • 15 篇 school of cyber ...
  • 14 篇 hubei key labora...
  • 14 篇 national enginee...
  • 14 篇 hubei engineerin...
  • 14 篇 guangdong key la...
  • 13 篇 services computi...
  • 13 篇 school of inform...
  • 12 篇 cluster and grid...
  • 9 篇 pazhou lab
  • 9 篇 school of data a...
  • 9 篇 school of softwa...
  • 8 篇 college of infor...

作者

  • 17 篇 zheng wei-shi
  • 12 篇 jin hai
  • 10 篇 hu shengshan
  • 10 篇 zhang leo yu
  • 10 篇 xie xiaohua
  • 9 篇 xiao ma
  • 8 篇 kang xiangui
  • 8 篇 wang chang-dong
  • 8 篇 ma xiao
  • 7 篇 wan wei
  • 7 篇 lai jian-huang
  • 7 篇 luo weiqi
  • 7 篇 cao xiaochun
  • 7 篇 xu qianqian
  • 6 篇 fu shenghao
  • 6 篇 huang jiwu
  • 6 篇 huang qingming
  • 6 篇 yang qize
  • 6 篇 zhou ziqi
  • 6 篇 yang jian

语言

  • 227 篇 英文
  • 20 篇 其他
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 中文
检索条件"机构=School of Data and Computer Science and Guangdong Key Lab. of Information Security and Technology"
248 条 记 录,以下是161-170 订阅
排序:
DONet: Dual-octave network for fast MR image reconstruction
arXiv
收藏 引用
arXiv 2021年
作者: Feng, Chun-Mei Yang, Zhanyuan Fu, Huazhu Xu, Yong Yang, Jian Shao, Ling Shenzhen Key Laboratory of Visual Object Detection and Recognition Harbin Institute of Technology Shenzhen518055 China School of Automation Engineering University of Electronic Science and Technology of China 611731 China Inception Institute of Artificial Intelligence Abu Dhabi United Arab Emirates PCA Laboratory Key Lab. of Intelligent Percept. and Syst. for High-Dimensional Information of Ministry of Education Nanjiang University of Science and Technology Nanjiang210094 China Jiangsu Key Laboratory of Image and Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China
Magnetic resonance (MR) image acquisition is an inherently prolonged process, whose acceleration has long been the subject of research. This is commonly achieved by obtaining multiple undersampled images, simultaneous... 详细信息
来源: 评论
Performance of Systematic Convolutional Low Density Generator Matrix Codes over Rayleigh Fading Channels with Impulsive Noise  3rd
Performance of Systematic Convolutional Low Density Generato...
收藏 引用
3rd International Conference on Space information Networks, SINC 2018
作者: Ji, Meiying Chen, Shengxiao Ma, Xiao School of Data and Computer Science Sun Yat-sen University Guangzhou510006 China School of Electronics and Information Technology Sun Yat-sen University Guangzhou510006 China Guangdong Key Laboratory of Information Security Technology Sun Yat-sen University Guangzhou510006 China
We investigate the systematic convolutional low density generator matrix (SC-LDGM) codes over Rayleigh fading channels with symmetric alpha-stable (SαS) impulsive noise. The performance is analy... 详细信息
来源: 评论
Heavy metals prediction in coastal marine sediments using hybridized machine learning models with metaheuristic optimization algorithm
收藏 引用
Chemosphere 2024年 352卷 141329页
作者: Yaseen, Zaher Mundher Melini Wan Mohtar, Wan Hanna Homod, Raad Z. Alawi, Omer A. Abba, Sani I. Oudah, Atheer Y. Togun, Hussein Goliatt, Leonardo Ul Hassan Kazmi, Syed Shabi Tao, Hai Civil and Environmental Engineering Department King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia Interdisciplinary Research Center for Membranes and Water Security King Fahd University of Petroleum & Minerals (KFUPM) Dhahran Saudi Arabia Department of Civil Engineering Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia UKM Selangor Bangi 43600 Malaysia Environmental Management Centre Institute of Climate Change Universiti Kebangsaan Malaysia Selangor UKM Bangi 43600 Malaysia Department of Oil and Gas Engineering Basrah University for Oil and Gas Basra Iraq Department of Thermofluids School of Mechanical Engineering Universiti Teknologi Malaysia UTM Skudai Johor Bahru 81310 Malaysia Department of Computer Sciences College of Education for Pure Science University of Thi-Qar Nasiriyah 64001 Iraq Information and Communication Technology Research Group Scientific Research Center Al-Ayen University Nasiriyah 64001 Iraq Department of Mechanical Engineering College of Engineering University of Baghdad Baghdad Iraq Computational and Applied Mechanics Department Federal University of Juiz de Fora 36036-900 Brazil Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention and Guangdong Provincial Key Laboratory of Marine Biotechnology Shantou University Shantou 515063 China School of Computer and Information Qiannan Normal University for Nationalities Guizhou Duyun 558000 China Institute of Big Data Application and Artificial Intelligence Qiannan Normal University for Nationalities Guizhou Duyun 558000 China Faculty of Data Science and Information Technology INTI International University 71800 Malaysia
This study proposes different standalone models viz: Elman neural network (ENN), Boosted Tree algorithm (BTA), and f relevance vector machine (RVM) for modeling arsenic (As (mg/kg)) and zinc (Zn (mg/kg)) in marine sed... 详细信息
来源: 评论
Auto-Generating Neural Networks with Reinforcement Learning for Multi-Purpose Image Forensics
Auto-Generating Neural Networks with Reinforcement Learning ...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Yujun Wei Yifang Chen Xiangui Kang Z. Jane Wang Liang Xiao Guangdong Key Lab of Information Security School of Data and Computer Science Sun Yat-Sen University Guangzhou China Department of ECE University of British Colombia Vancouver Canada Department of Communication Engineering Xiamen University Xiamen China
Designing a forensic convolutional neural network (CNN) is usually based on some ad-hoc intuition and domain knowledge. Many methods to automate neural network design have been proposed for computer vision tasks, but ... 详细信息
来源: 评论
Interactive Two-Stream Decoder for Accurate and Fast Saliency Detection
Interactive Two-Stream Decoder for Accurate and Fast Salienc...
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Huajun Zhou Xiaohua Xie Jian-Huang Lai Zixuan Chen Lingxiao Yang School of Data and Computer Science Sun Yat-sen University China Guangdong Province Key Laboratory of Information Security Technology China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China Sun Yat-sen University Guangzhou China
Recently, contour information largely improves the performance of saliency detection. However, the discussion on the correlation between saliency and contour remains scarce. In this paper, we first analyze such correl... 详细信息
来源: 评论
Person re-identification by contour sketch under moderate clothing change
arXiv
收藏 引用
arXiv 2020年
作者: Yang, Qize Wu, Ancong Zheng, Wei-Shi School of Data and Computer Science Sun Yat-sen University Guangzhou510275 China School of Electronics and Information Technology Sun Yat-sen University Guangzhou510275 China Guangdong Province Key Laboratory of Information Security China School of Data and Computer Science Sun Yatsen University Guangzhou510275 China Peng Cheng Laboratory Shenzhen518005 China Ministry of Education China
Person re-identification (re-id), the process of matching pedestrian images across different camera views, is an important task in visual surveillance. Substantial development of re-id has recently been observed, and ... 详细信息
来源: 评论
Depthwise Separable Convolutional Neural Network for Image Forensics  34
Depthwise Separable Convolutional Neural Network for Image F...
收藏 引用
34th IEEE International Conference on Visual Communications and Image Processing, VCIP 2019
作者: Chen, Yifang Peng, Feng Kang, Xiangui Jane Wang, Z. Sun Yat-sen University Guangdong Key Lab of Information Security School of Data and Computer Science China ECE Dept University of British Colombia VancouverBCV6T 1Z4 Canada
General-purpose forensics on small image patches appears to be feasible and important, but in fact poses a challenge due to insufficient statistics. Furthermore, there is a need to develop a forensic approach that can... 详细信息
来源: 评论
Is AI Robust Enough for Scientific Research?
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Jun-Jie Song, Jiahao Wang, Xiu-Cheng Li, Fu-Peng Liu, Zehan Chen, Jian-Nan Dang, Haoning Wang, Shiyao Zhang, Yiyan Xu, Jianhui Shi, Chunxiang Wang, Fei Pang, Long-Gang Cheng, Nan Zhang, Weiwei Zhang, Duo Meng, Deyu Northwest Institute of Nuclear Technology No. 28 Pingyu Road Shaanxi Xi’an710024 China School of Telecommunications Engineering Xidian University No. 2 South Taibai Road Shaanxi Xi’an710071 China State Key Laboratory of ISN No. 2 South Taibai Road Shaanxi Xi’an710071 China Institute of Particle Physics Central China Normal University No. 152 Luoyu Road Hubei Wuhan30079 China School of Computer Science and Technology Xi’an Jiaotong University No. 28 Xianning West Road Shaanxi Xi’an710049 China Ministry of Education Key Lab of Intelligent Networks and Network Security Xi’an Jiaotong University No. 28 Xianning West Road Shaanxi Xi’an710049 China Guangzhou Institute of Geography Academy of Sciences No. 100 Xianlie Road Guangdong Guangzhou510070 China National Meteorological Information Center Beijing100044 China MDX Research Center for Element Strategy Institute of Integrated Research Institute of Science Tokyo Midori-ku Yokohama226-8503 Japan School of Physics and Information Technology Shaanxi Normal University No. 620 West Chang’an Avenue Shaanxi Xi’an710119 China School of Aeronautics Northwestern Polytechnical University No. 127 West Youyi Road Shaanxi Xi’an710072 China AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China School of Mathematics and Statistics Xi’an Jiaotong University No. 28 Xianning West Road Shaanxi Xi’an710049 China
We uncover a phenomenon largely overlooked by the scientific community utilizing AI: neural networks exhibit high susceptibility to minute perturbations, resulting in significant deviations in their outputs. Through a... 详细信息
来源: 评论
ZSTAD: Zero-Shot Temporal Activity Detection
ZSTAD: Zero-Shot Temporal Activity Detection
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Lingling Zhang Xiaojun Chang Jun Liu Minnan Luo Sen Wang Zongyuan Ge Alexander Hauptmann School of Computer Science and Technology Xi'an Jiaotong University Xian China Ministry of Education Key Lab For Intelligent Networks and Network Security Xian China Faculty of Information Technology Monash University Australia National Engineering Lab for Big Data Analytics Xi'an Jiaotong University Xian China School of Information Technology and Electrical Engineering The University of Queensland Australia School of Computer Science Carnegie Mellon University USA
An integral part of video analysis and surveillance is temporal activity detection, which means to simultaneously recognize and localize activities in long untrimmed videos. Currently, the most effective methods of te... 详细信息
来源: 评论
ZSTAD: Zero-shot temporal activity detection
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Lingling Chang, Xiaojun Liu, Jun Luo, Minnan Wang, Sen Ge, Zongyuan Hauptmann, Alexander School of Computer Science and Technology Xian Jiaotong University Xian China Ministry of Education Key Lab For Intelligent Networks and Network Security Xian China Faculty of Information Technology Monash University Australia National Engineering Lab for Big Data Analytics Xian Jiaotong University Xian China School of Information Technology and Electrical Engineering University of Queensland Australia School of Computer Science Carnegie Mellon University United States
An integral part of video analysis and surveillance is temporal activity detection, which means to simultaneously recognize and localize activities in long untrimmed videos. Currently, the most effective methods of te... 详细信息
来源: 评论