咨询与建议

限定检索结果

文献类型

  • 161 篇 期刊文献
  • 87 篇 会议

馆藏范围

  • 248 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 192 篇 工学
    • 148 篇 计算机科学与技术...
    • 129 篇 软件工程
    • 61 篇 信息与通信工程
    • 23 篇 电气工程
    • 23 篇 生物工程
    • 18 篇 电子科学与技术(可...
    • 15 篇 控制科学与工程
    • 13 篇 光学工程
    • 11 篇 机械工程
    • 10 篇 生物医学工程(可授...
    • 10 篇 网络空间安全
    • 7 篇 化学工程与技术
    • 5 篇 仪器科学与技术
    • 5 篇 土木工程
    • 5 篇 安全科学与工程
    • 4 篇 动力工程及工程热...
  • 81 篇 理学
    • 44 篇 数学
    • 26 篇 生物学
    • 16 篇 物理学
    • 14 篇 统计学(可授理学、...
    • 9 篇 化学
    • 5 篇 系统科学
  • 53 篇 管理学
    • 31 篇 图书情报与档案管...
    • 24 篇 管理科学与工程(可...
    • 8 篇 工商管理
  • 13 篇 法学
    • 7 篇 社会学
    • 6 篇 法学
  • 9 篇 医学
    • 7 篇 基础医学(可授医学...
    • 7 篇 临床医学
  • 5 篇 经济学
    • 5 篇 应用经济学
  • 3 篇 农学
  • 1 篇 军事学

主题

  • 11 篇 semantics
  • 8 篇 convolution
  • 7 篇 deep neural netw...
  • 7 篇 decoding
  • 7 篇 training
  • 6 篇 object detection
  • 6 篇 feature extracti...
  • 5 篇 cameras
  • 5 篇 optimization
  • 5 篇 machine learning
  • 5 篇 steganography
  • 5 篇 federated learni...
  • 4 篇 image enhancemen...
  • 4 篇 contrastive lear...
  • 4 篇 encoding
  • 4 篇 deep reinforceme...
  • 3 篇 gamma-gamma chan...
  • 3 篇 deep learning
  • 3 篇 task analysis
  • 3 篇 clustering algor...

机构

  • 39 篇 school of data a...
  • 23 篇 key laboratory o...
  • 22 篇 guangdong key la...
  • 21 篇 school of comput...
  • 17 篇 peng cheng labor...
  • 17 篇 guangdong provin...
  • 15 篇 school of comput...
  • 15 篇 school of electr...
  • 15 篇 school of cyber ...
  • 14 篇 hubei key labora...
  • 14 篇 national enginee...
  • 14 篇 hubei engineerin...
  • 14 篇 guangdong key la...
  • 13 篇 services computi...
  • 13 篇 school of inform...
  • 12 篇 cluster and grid...
  • 9 篇 pazhou lab
  • 9 篇 school of data a...
  • 9 篇 school of softwa...
  • 8 篇 college of infor...

作者

  • 17 篇 zheng wei-shi
  • 12 篇 jin hai
  • 10 篇 hu shengshan
  • 10 篇 zhang leo yu
  • 10 篇 xie xiaohua
  • 9 篇 xiao ma
  • 8 篇 kang xiangui
  • 8 篇 wang chang-dong
  • 8 篇 ma xiao
  • 7 篇 wan wei
  • 7 篇 lai jian-huang
  • 7 篇 luo weiqi
  • 7 篇 cao xiaochun
  • 7 篇 xu qianqian
  • 6 篇 fu shenghao
  • 6 篇 huang jiwu
  • 6 篇 huang qingming
  • 6 篇 yang qize
  • 6 篇 zhou ziqi
  • 6 篇 yang jian

语言

  • 227 篇 英文
  • 20 篇 其他
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 中文
检索条件"机构=School of Data and Computer Science and Guangdong Key Lab. of Information Security and Technology"
248 条 记 录,以下是81-90 订阅
排序:
Learning Fair and Efficient Multiple Access Schemes with Decomposed MADDPG
Learning Fair and Efficient Multiple Access Schemes with Dec...
收藏 引用
Future Communications and Networks (FCN), International Conference on
作者: Zhaoyang Liu Haoxin Lin Xijun Wang Jie Gong Xiang Chen School of Electronics and Information Technology Sun Yat-sen University Guangzhou China Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing Guilin China State Key Lab of Novel Software Technology Nanjing University Nanjing China Guangdong Key Laboratory of Information Security Technology School of Computer Science and Engineering Sun Yat-sen University Guangzhou China
With the growing demand for wireless communication networks, achieving efficient and equitable channel access schemes has become paramount. In this paper, we delve into the realm of distributed channel access in homog... 详细信息
来源: 评论
A Robust Blind Watermarking Scheme for Color Images Using Quaternion Fourier Transform  6th
A Robust Blind Watermarking Scheme for Color Images Using Qu...
收藏 引用
6th International Conference on Artificial Intelligence and security, ICAIS 2020
作者: Liang, Renjie Zheng, Peijia Fang, Yanmei Song, Tingting School of Data and Computer Science Guangdong Key Laboratory of Information Security Technology Sun Yat-Sen University Guangzhou510006 China
With the advancement of image devices, massive image data are being generated exponentially, which indirectly leads to more copyright issues over the images. Image watermarking is an important method for copyright pro... 详细信息
来源: 评论
A mathematical model for efficient extraction of key locations from point-cloud data in track area
收藏 引用
Industrial Artificial Intelligence 2023年 第1期1卷 1-14页
作者: Chen, Shuyue Wu, Jiaolv Lu, Jian Wang, Xizhao College of Mathematics and Statistics Shenzhen University Shenzhen China School of Software Engineering Shenzhen Institue of Information Technology Shenzhen China Shenzhen No. 3 Vocational School of Technology Shenzhen China College of Engineering Huaqiao University Quanzhou China Shenzhen Key Lab. of Advanced Machine Learning and Applications Shenzhen University Shenzhen China Guangdong Key Lab. of Intelligent Information Process Shenzhen University Shenzhen China College of Computer Science and Software Engineering Shenzhen University Shenzhen China
During the construction of a metro system, it is inevitable that deviations will occur between the excavated tunnel and the original designed scheme. As such, it is necessary to adjust the designed scheme to accommoda...
来源: 评论
Secure outsourced numerical solution of algebraic equations  6th
Secure outsourced numerical solution of algebraic equations
收藏 引用
6th International Conference on Artificial Intelligence and security,ICAIS 2020
作者: Zeng, Ke Zheng, Peijia Liu, Hongmei School of Data and Computer Science Guangdong Key Laboratory of Information Security Technology Sun Yat-Sen University Guangzhou510006 China
Numerical methods are designed to provide numerical solutions of algebraic equations, because there are not analytical solutions for algebraic equations whose degrees are larger than four. In cloud computing, outsourc... 详细信息
来源: 评论
NTIRE 2023 Challenge on Light Field Image Super-Resolution: dataset, Methods and Results
NTIRE 2023 Challenge on Light Field Image Super-Resolution: ...
收藏 引用
2023 IEEE/CVF Conference on computer Vision and Pattern Recognition Workshops, CVPRW 2023
作者: Wang, Yingqian Wang, Longguang Liang, Zhengyu Yang, Jungang Timofte, Radu Guo, Yulan Jin, Kai Wei, Zeqiang Yang, Angulia Guo, Sha Gao, Mingzhi Zhou, Xiuzhuang Van Duong, Vinh Huu, Thuc Nguyen Yim, Jonghoon Jeon, Byeungwoo Liu, Yutong Cheng, Zhen Xiao, Zeyu Xu, Ruikang Xiong, Zhiwei Liu, Gaosheng Jin, Manchang Yue, Huanjing Yang, Jingyu Gao, Chen Zhang, Shuo Chang, Song Lin, Youfang Chao, Wentao Wang, Xuechun Wang, Guanghui Duan, Fuqing Xia, Wang Wang, Yan Xia, Peiqi Wang, Shunzhou Lu, Yao Cong, Ruixuan Sheng, Hao Yang, Da Chen, Rongshan Wang, Sizhe Cui, Zhenglong Chen, Yilei Lu, Yongjie Cai, Dongjun An, Ping Salem, Ahmed Ibrahem, Hatem Yagoub, Bilel Kang, Hyun-Soo Zeng, Zekai Wu, Heng National University of Defense Technology China Aviation University of Air Force China University of Würzburg Germany Eth Zürich Switzerland Sun Yat-sen University The Shenzhen Campus of Sun Yat-sen University China Bigo Technology Pte. Ltd. Singapore Smart Medical Innovation Lab Beijing University of Posts and Telecommunications China Global Explorer Ltd. Suzhou China National Engineering Research Center of Visual Technology School of Computer Science Peking University China School of Artificial Intelligence Beijing University of Posts and Telecommunications China Department of Electrical and Computer Engineering Sungkyunkwan University Korea Republic of University of Science and Technology of China China School of Electrical and Information Engineering Tianjin University China Beijing Key Lab of Traffic Data Analysis and Mining School of Computer and Information Technology Beijing Jiaotong University China Beijing Normal University China Toronto Metropolitan University Canada Beijing Institute of Technology China Shenzhen MSU-BIT University China State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University China Beihang Hangzhou Innovation Institute Yuhang China Faculty of Applied Sciences Macao Polytechnic University China School of Communication and Information Engineering Shanghai University China School of Information and Communication Engineering Chungbuk National University Korea Republic of Guangdong University of Technology China
In this report, we summarize the first NTIRE challenge on light field (LF) image super-resolution (SR), which aims at super-resolving LF images under the standard bicubic degradation with a magnification factor of 4. ... 详细信息
来源: 评论
The minority matters: a diversity-promoting collab.rative metric learning algorithm  22
The minority matters: a diversity-promoting collaborative me...
收藏 引用
Proceedings of the 36th International Conference on Neural information Processing Systems
作者: Shilong Bao Qianqian Xu Zhiyong Yang Yuan He Xiaochun Cao Qingming Huang State Key Laboratory of Information Security Institute of Information Engineering CAS and School of Cyber Security University of Chinese Academy of Sciences Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS School of Computer Science and Tech. University of Chinese Academy of Sciences Alibaba Group School of Cyber Science and Technology Shenzhen Campus Sun Yat-sen University Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS and School of Computer Science and Tech. University of Chinese Academy of Sciences and Key Laboratory of Big Data Mining and Knowledge Management CAS and Peng Cheng Laboratory
Collab.rative Metric Learning (CML) has recently emerged as a popular method in recommendation systems (RS), closing the gap between metric learning and Collab.rative Filtering. Following the convention of RS, existin...
来源: 评论
SemiCD-VL: Visual-Language Model Guidance Makes Better Semi-supervised Change Detector
arXiv
收藏 引用
arXiv 2024年
作者: Li, Kaiyu Cao, Xiangyong Deng, Yupeng Song, Jiayi Liu, Junmin Meng, Deyu Wang, Zhi School of Software Engineering Xi’an Jiaotong University Xi’an710049 China School of Computer Science and Technology Ministry of Education Key Lab For Intelligent Networks and Network Security Xi’an Jiaotong University Xi’an710049 China Aerospace Information Research Institute Chinese Academy of Sciences Beijing100094 China School of Mathematics and Statistics Ministry of Education Key Lab of Intelligent Networks and Network Security Xi’an Jiaotong University Shaanxi Xi’an China Guangdong Guangzhou China
Change Detection (CD) aims to identify pixels with semantic changes between images. However, annotating massive numbers of pixel-level images is lab.r-intensive and costly, especially for multi-temporal images, which ... 详细信息
来源: 评论
Disentangled Noisy Correspondence Learning
arXiv
收藏 引用
arXiv 2024年
作者: Dang, Zhuohang Luo, Minnan Wang, Jihong Jia, Chengyou Han, Haochen Wan, Herun Dai, Guang Chang, Xiaojun Wang, Jingdong The School of Computer Science and Technology The Ministry of Education Key Laboratory of Intelligent Networks and Network Security The Shaanxi Province Key Laboratory of Big Data Knowledge Engineering Xi'an Jiaotong University Shaanxi Xi'An710049 China SGIT AI Lab State Grid Shaanxi Electric Power Company Limited State Grid Corporation of China Shaanxi China The School of Information Science and Technology University of Science and Technology China United Arab Emirates The Baidu Inc China
Cross-modal retrieval is crucial in understanding latent correspondences across modalities. However, existing methods implicitly assume well-matched training data, which is impractical as real-world data inevitably in... 详细信息
来源: 评论
Secure linear aggregation using decentralized threshold additive homomorphic encryption for federated learning
arXiv
收藏 引用
arXiv 2021年
作者: Tian, Haibo Zhang, Fangguo Shao, Yunfeng Li, Bingshuai The GuangDong Province Key Laboratory of Information Security Technology School of Data and Computer Science Sun Yat-Sen University Guangdong Guangzhou510275 China Huawei Noah's Ark Lab.
Secure linear aggregation is to linearly aggregate private inputs of different users with privacy protection. The server in a federated learning (FL) environment can fulfill any linear computation on private inputs of... 详细信息
来源: 评论
Hfcyclegan: High-Frequency information Guided Cycle-Consistent Adversarial Network for Fundus Image Enhancement
SSRN
收藏 引用
SSRN 2025年
作者: Liu, Shaopeng Wang, Kai Wu, Xiaohang Xu, Fabao Zhou, Ying Wang, Xinpeng Wang, Qinkang Cen, Haoran Guo, Jianhua Lu, Xu School of Computer Science Guangdong Polytechnic Normal University Guangzhou510665 China Zhongshan Ophthalmic Center State Key Laboratory of Ophthalmology Sun Yat-Sen University Guangdong Guangzhou China Qilu Hospital Shandong University Jinan China Shenzhen Institute of Information Technology Shenzhen China Guangdong Provincial Key Laboratory of Intellectual Property & Big Data Guangzhou510665 China Pazhou Lab Guangzhou510330 China
The development of fundus imaging techniques has greatly supported the diagnosis of ophthalmic *** advancements, poor imaging quality, such as artifacts or insufficient illumination, poses challenges for disease *** c... 详细信息
来源: 评论