Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
The perception in most existing vision-based reinforcement learning(RL) models for robotic manipulation relies heavily on static third-person or hand-mounted first-person cameras. In scenarios with occlusions and limi...
详细信息
The perception in most existing vision-based reinforcement learning(RL) models for robotic manipulation relies heavily on static third-person or hand-mounted first-person cameras. In scenarios with occlusions and limited maneuvering space, these carefully positioned cameras often struggle to provide effective visual observations during manipulation. Taking inspiration from human capabilities, we introduce a novel RL-based dual-arm active visual-guided manipulation model(DAVMM), which simultaneously infers “eye” actions and “hand” actions for two separate robotic arms(referred to as the vision-arm and the worker-arm) based on current observations, empowering the robot with the ability to actively perceive and interact with its environment. To handle the extensive redundant observation-action space, we propose a decouplable target-centric reward paradigm to offer stable guidance for the training process. For making fine-grained manipulation action decisions, alongside a global scene image encoder, we utilize an independent encoder to extract local target texture features,enabling the simultaneous acquisition of both global and detailed local information. Additionally, we employ residual-RL and curriculum learning techniques to further enhance our model's sample efficiency and training stability. We conducted comparative experiments and analyses of DAVMM against a set of strong baselines on three occluded and narrow-space manipulation tasks. DAVMM notably improves the success rates across all manipulation tasks and showcases rapid learning capabilities.
Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. Howeve...
详细信息
Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. However, the traditional ISAC schemes are highly dependent on the accurate mathematical model and suffer from the challenges of high complexity and poor performance in practical scenarios. Recently, artificial intelligence (AI) has emerged as a viable technique to address these issues due to its powerful learning capabilities, satisfactory generalization capability, fast inference speed, and high adaptability for dynamic environments, facilitating a system design shift from model-driven to data-driven. Intelligent ISAC, which integrates AI into ISAC, has been a hot topic that has attracted many researchers to investigate. In this paper, we provide a comprehensive overview of intelligent ISAC, including its motivation, typical applications, recent trends, and challenges. In particular, we first introduce the basic principle of ISAC, followed by its key techniques. Then, an overview of AI and a comparison between model-based and AI-based methods for ISAC are provided. Furthermore, the typical applications of AI in ISAC and the recent trends for AI-enabled ISAC are reviewed. Finally, the future research issues and challenges of intelligent ISAC are discussed.
Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle *** and propagation processes are illustrated for pentadisperse and triadisperse particle systems,*** these proce...
详细信息
Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle *** and propagation processes are illustrated for pentadisperse and triadisperse particle systems,*** these processes,particles involved in the avalanche grow slowly in the early stage and explosively in the later stage,which is clearly different from the continuous and steady growth trend in the monodisperse *** examining the avalanche propagation,the number growth of particles involved in the avalanche and the slope of the number growth,the initial state can be divided into three stages:T1(nucleation stage),T2(propagation stage),T3(overall avalanche stage).We focus on the characteristics of the avalanche in the T2 stage,and find that propagation distances increase almost linearly in both axial and radial directions in polydisperse *** also consider the distribution characteristics of the average coordination number and average velocity for the moving *** results support that the polydisperse particle systems are more stable in the T2 stage.
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorization of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings.
MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors(MSCs).Despite its superior electrochemical performance,only a few studies have reported MXene-based ultrahigh-rate(...
详细信息
MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors(MSCs).Despite its superior electrochemical performance,only a few studies have reported MXene-based ultrahigh-rate(>1000 mV s^(−1))on-paper MSCs,mainly due to the reduced electrical conductance of MXene films deposited on ***,ultrahigh-rate metal-free on-paper MSCs based on heterogeneous MXene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)-stack electrodes are fabricated through the combination of direct ink writing and femtosecond laser *** a footprint area of only 20 mm^(2),the on-paper MSCs exhibit excellent high-rate capacitive behavior with an areal capacitance of 5.7 mF cm^(−2)and long cycle life(>95%capacitance retention after 10,000 cycles)at a high scan rate of 1000 mV s^(−1),outperforming most of the present on-paper ***,the heterogeneous MXene/PEDOT:PSS electrodes can interconnect individual MSCs into metal-free on-paper MSC arrays,which can also be simultaneously charged/discharged at 1000 mV s^(−1),showing scalable capacitive *** heterogeneous MXene/PEDOT:PSS stacks are a promising electrode structure for on-paper MSCs to serve as ultrafast miniaturized energy storage components for emerging paper electronics.
Solar energy harvesting circuits play a major role in powering portable consumer electronic applications. Batteries are also associated as a power source in these applications as a power balancing element. This work e...
详细信息
Robots are increasingly being deployed in densely populated environments, such as homes, hotels, and office buildings, where they rely on explicit instructions from humans to perform tasks. However, complex tasks ofte...
详细信息
Robots are increasingly being deployed in densely populated environments, such as homes, hotels, and office buildings, where they rely on explicit instructions from humans to perform tasks. However, complex tasks often require multiple instructions and prolonged monitoring, which can be time-consuming and demanding for users. Despite this, there is limited research on enabling robots to autonomously generate tasks based on real-life scenarios. Advanced intelligence necessitates robots to autonomously observe and analyze their environment and then generate tasks autonomously to fulfill human requirements without explicit commands. To address this gap, we propose the autonomous generation of navigation tasks using natural language dialogues. Specifically, a robot autonomously generates tasks by analyzing dialogues involving multiple persons in a real office environment to facilitate the completion of item transportation between various *** propose the leveraging of a large language model(LLM) through chain-of-thought prompting to generate a navigation sequence for a robot from dialogues. We also construct a benchmark dataset consisting of 625 multiperson dialogues using the generation capability of LLMs. Evaluation results and real-world experiments in an office building demonstrate the effectiveness of the proposed method.
This article presents an in-depth exploration of the acoustofluidic capabilities of guided flexural waves(GFWs)generated by a membrane acoustic waveguide actuator(MAWA).By harnessing the potential of GFWs,cavity-agnos...
详细信息
This article presents an in-depth exploration of the acoustofluidic capabilities of guided flexural waves(GFWs)generated by a membrane acoustic waveguide actuator(MAWA).By harnessing the potential of GFWs,cavity-agnostic advanced particle manipulation functions are achieved,unlocking new avenues for microfluidic systems and lab-on-a-chip *** localized acoustofluidic effects of GFWs arising from the evanescent nature of the acoustic fields they induce inside a liquid medium are numerically investigated to highlight their unique and promising *** traditional acoustofluidic technologies,the GFWs propagating on the MAWA’s membrane waveguide allow for cavity-agnostic particle manipulation,irrespective of the resonant properties of the fluidic ***,the acoustofluidic functions enabled by the device depend on the flexural mode populating the active region of the membrane *** demonstrations using two types of particles include in-sessile-droplet particle transport,mixing,and spatial separation based on particle diameter,along with streaming-induced counter-flow virtual channel generation in microfluidic PDMS *** experiments emphasize the versatility and potential applications of the MAWA as a microfluidic platform targeted at lab-on-a-chip development and showcase the MAWA’s compatibility with existing microfluidic systems.
Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning ***,any metapaths consistin...
详细信息
Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning ***,any metapaths consisting of multiple,simple metarelations must be driven by domain *** sensitive,expensive,and limited metapaths severely reduce the flexibility and scalability of the existing models.A metapath-free,scalable representation learning model,called Metarelation2vec,is proposed for HNs with biased joint learning of all metarelations in a bid to address this ***,a metarelation-aware,biased walk strategy is first designed to obtain better training samples by using autogenerating cooperation probabilities for all metarelations rather than using expert-given ***,grouped nodes by the type,a common and shallow skip-gram model is used to separately learn structural proximity for each node ***,grouped links by the type,a novel and shallow model is used to separately learn the semantic proximity for each link ***,supervised by the cooperation probabilities of all meta-words,the biased training samples are thrown into the shallow models to jointly learn the structural and semantic information in the HNs,ensuring the accuracy and scalability of the *** experimental results on three tasks and four open datasets demonstrate the advantages of our proposed model.
暂无评论