The Intelligent Internet of Things(IIoT) involves real-world things that communicate or interact with each other through networking technologies by collecting data from these “things” and using intelligent approache...
详细信息
The Intelligent Internet of Things(IIoT) involves real-world things that communicate or interact with each other through networking technologies by collecting data from these “things” and using intelligent approaches, such as Artificial Intelligence(AI) and machine learning, to make accurate decisions. Data science is the science of dealing with data and its relationships through intelligent approaches. Most state-of-the-art research focuses independently on either data science or IIoT, rather than exploring their integration. Therefore, to address the gap, this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT) system by classifying the existing IoT-based data science techniques and presenting a summary of various characteristics. The paper analyzes the data science or big data security and privacy features, including network architecture, data protection, and continuous monitoring of data, which face challenges in various IoT-based systems. Extensive insights into IoT data security, privacy, and challenges are visualized in the context of data science for IoT. In addition, this study reveals the current opportunities to enhance data science and IoT market development. The current gap and challenges faced in the integration of data science and IoT are comprehensively presented, followed by the future outlook and possible solutions.
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical...
详细信息
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical *** paper analyzes two fundamental failure cases in the baseline AD model and identifies key reasons that limit the recognition accuracy of existing approaches. Specifically, by Case-1, we found that the main reason detrimental to current AD methods is that the inputs to the recovery model contain a large number of detailed features to be recovered, which leads to the normal/abnormal area has not/has been recovered into its original state. By Case-2, we surprisingly found that the abnormal area that cannot be recognized in image-level representations can be easily recognized in the feature-level representation. Based on the above observations, we propose a novel recover-then-discriminate(ReDi) framework for *** takes a self-generated feature map(e.g., histogram of oriented gradients) and a selected prompted image as explicit input information to address the identified in Case-1. Additionally, a feature-level discriminative network is introduced to amplify abnormal differences between the recovered and input representations. Extensive experiments on two widely used yet challenging AD datasets demonstrate that ReDi achieves state-of-the-art recognition accuracy.
Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. Howeve...
详细信息
Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. However, the traditional ISAC schemes are highly dependent on the accurate mathematical model and suffer from the challenges of high complexity and poor performance in practical scenarios. Recently, artificial intelligence (AI) has emerged as a viable technique to address these issues due to its powerful learning capabilities, satisfactory generalization capability, fast inference speed, and high adaptability for dynamic environments, facilitating a system design shift from model-driven to data-driven. Intelligent ISAC, which integrates AI into ISAC, has been a hot topic that has attracted many researchers to investigate. In this paper, we provide a comprehensive overview of intelligent ISAC, including its motivation, typical applications, recent trends, and challenges. In particular, we first introduce the basic principle of ISAC, followed by its key techniques. Then, an overview of AI and a comparison between model-based and AI-based methods for ISAC are provided. Furthermore, the typical applications of AI in ISAC and the recent trends for AI-enabled ISAC are reviewed. Finally, the future research issues and challenges of intelligent ISAC are discussed.
Apraxia of speech (AOS) is a disorder that prevents people from talking. There is a need to develop different augmentative and alternative communication (AAC) tools to help people with AOS express themselves clearly t...
详细信息
With the rise of digital infrastructure and Internet of Things (IoT), a substantial amount of data is continuously generated that needs to be processed efficiently. While modern artificial intelligence (AI) approaches...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,in...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound *** existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,*** address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule *** MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding *** transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the *** approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the ***,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation *** results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)*** findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
Rule-induction models have demonstrated great power in the inductive setting of knowledge graph completion. In this setting, the models are tested on a knowledge graph entirely composed of unseen entities. These ...
详细信息
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless *** this paper,a robust transmission scheme for ...
详细信息
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless *** this paper,a robust transmission scheme for an AirCompbased FL system with imperfect channel state information(CSI)is *** model CSI uncertainty,an expectation-based error model is *** main objective is to maximize the number of selected devices that meet mean-squared error(MSE)requirements for model broadcast and model *** problem is formulated as a combinatorial optimization problem and is solved in two ***,the priority order of devices is determined by a sparsity-inducing ***,a feasibility detection scheme is used to select the maximum number of devices to guarantee that the MSE requirements are *** alternating optimization(AO)scheme is used to transform the resulting nonconvex problem into two convex *** results illustrate the effectiveness and robustness of the proposed scheme.
The behavior of users on online life service platforms like Meituan and Yelp often occurs within specific finegrained spatiotemporal contexts(i.e., when and where). Recommender systems, designed to serve millions of u...
详细信息
The behavior of users on online life service platforms like Meituan and Yelp often occurs within specific finegrained spatiotemporal contexts(i.e., when and where). Recommender systems, designed to serve millions of users, typically operate in a fully server-based manner, requiring on-device users to upload their behavioral data, including fine-grained spatiotemporal contexts, to the server, which has sparked public concern regarding privacy. Consequently, user devices only upload coarse-grained spatiotemporal contexts for user privacy protection. However, previous research mostly focuses on modeling fine-grained spatiotemporal contexts using knowledge graph convolutional models, which are not applicable to coarse-grained spatiotemporal contexts in privacy-constrained recommender systems. In this paper, we investigate privacy-preserving recommendation by leveraging coarse-grained spatiotemporal contexts. We propose the coarse-grained spatiotemporal knowledge graph for privacy-preserving recommendation(CSKG), which explicitly models spatiotemporal co-occurrences using common-sense knowledge from coarse-grained contexts. Specifically, we begin by constructing a spatiotemporal knowledge graph tailored to coarse-grained spatiotemporal contexts. Then we employ a learnable metagraph network that integrates common-sense information to filter and extract co-occurrences. CSKG evaluates the impact of coarsegrained spatiotemporal contexts on user behavior through the use of a knowledge graph convolutional network. Finally, we introduce joint learning to effectively learn representations. By conducting experiments on two real large-scale datasets,we achieve an average improvement of about 11.0% on two ranking metrics. The results clearly demonstrate that CSKG outperforms state-of-the-art baselines.
暂无评论