The steady-state security region(SSR)offers ro-bust support for the security assessment and control of new power systems with high uncertainty and ***,accurately solving the steady-state security region boundary(SS-RB...
详细信息
The steady-state security region(SSR)offers ro-bust support for the security assessment and control of new power systems with high uncertainty and ***,accurately solving the steady-state security region boundary(SS-RB),which is high-dimensional,non-convex,and non-linear,presents a significant *** address this problem,this paper proposes a method for approximating the SSRB in power systems using the feature non-linear converter and improved oblique decision ***,to better characterize the SSRB,boundary samples are generated using the proposed sampling *** samples are distributed within a limited distance near the ***,to handle the high-dimensionality,non-convexity and non-linearity of the SSRB,boundary samples are converted from the original power injection space to a new fea-ture space using the designed feature non-linear ***-sequently,in this feature space,boundary samples are linearly separated using the proposed information gain rate based weighted oblique decision ***,the effectiveness and generality of the proposed sampling method are verified on the WECC 3-machine 9-bus system and IEEE 118-bus system.
In recent years, the quality of 360° video over bandwidth-constrained networks has received a lot of attention. To reduce the bandwidth cost, some tile-based 360 ° video streaming systems split video spatial...
详细信息
Co-saliency detection within a single image is a common vision problem that has not yet been well addressed. Existing methods often used a bottom-up strategy to infer co-saliency in an image in which salient regions a...
详细信息
Co-saliency detection within a single image is a common vision problem that has not yet been well addressed. Existing methods often used a bottom-up strategy to infer co-saliency in an image in which salient regions are firstly detected using visual primitives such as color and shape and then grouped and merged into a co-saliency map. However, co-saliency is intrinsically perceived complexly with bottom-up and top-down strategies combined in human vision. To address this problem, this study proposes a novel end-toend trainable network comprising a backbone net and two branch nets. The backbone net uses ground-truth masks as top-down guidance for saliency prediction, whereas the two branch nets construct triplet proposals for regional feature mapping and clustering, which drives the network to be bottom-up sensitive to co-salient regions. We construct a new dataset of 2019 natural images with co-saliency in each image to evaluate the proposed method. Experimental results show that the proposed method achieves state-of-the-art accuracy with a running speed of 28 fps.
Delay/disruption tolerant networking(DTN) is proposed as a networking architecture to overcome challenging space communication characteristics for reliable data transmission service in presence of long propagation del...
详细信息
Delay/disruption tolerant networking(DTN) is proposed as a networking architecture to overcome challenging space communication characteristics for reliable data transmission service in presence of long propagation delays and/or lengthy link disruptions. Bundle protocol(BP) and Licklider Transmission Protocol(LTP) are the main key technologies for DTN. LTP red transmission offers a reliable transmission mechanism for space networks. One of the key metrics used to measure the performance of LTP in space applications is the end-to-end data delivery delay, which is influenced by factors such as the quality of spatial channels and the size of cross-layer packets. In this paper, an end-to-end reliable data delivery delay model of LTP red transmission is proposed using a roulette wheel algorithm, and the roulette wheel algorithm is more in line with the typical random characteristics in space networks. The proposed models are validated through real data transmission experiments on a semi-physical testing platform. Furthermore, the impact of cross-layer packet size on the performance of LTP reliable transmission is analyzed, with a focus on bundle size, block size, and segment size. The analysis and study results presented in this paper offer valuable contributions towards enhancing the reliability of LTP transmission in space communication scenarios.
Rule-induction models have demonstrated great power in the inductive setting of knowledge graph completion. In this setting, the models are tested on a knowledge graph entirely composed of unseen entities. These ...
详细信息
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless *** this paper,a robust transmission scheme for ...
详细信息
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless *** this paper,a robust transmission scheme for an AirCompbased FL system with imperfect channel state information(CSI)is *** model CSI uncertainty,an expectation-based error model is *** main objective is to maximize the number of selected devices that meet mean-squared error(MSE)requirements for model broadcast and model *** problem is formulated as a combinatorial optimization problem and is solved in two ***,the priority order of devices is determined by a sparsity-inducing ***,a feasibility detection scheme is used to select the maximum number of devices to guarantee that the MSE requirements are *** alternating optimization(AO)scheme is used to transform the resulting nonconvex problem into two convex *** results illustrate the effectiveness and robustness of the proposed scheme.
The behavior of users on online life service platforms like Meituan and Yelp often occurs within specific finegrained spatiotemporal contexts(i.e., when and where). Recommender systems, designed to serve millions of u...
详细信息
The behavior of users on online life service platforms like Meituan and Yelp often occurs within specific finegrained spatiotemporal contexts(i.e., when and where). Recommender systems, designed to serve millions of users, typically operate in a fully server-based manner, requiring on-device users to upload their behavioral data, including fine-grained spatiotemporal contexts, to the server, which has sparked public concern regarding privacy. Consequently, user devices only upload coarse-grained spatiotemporal contexts for user privacy protection. However, previous research mostly focuses on modeling fine-grained spatiotemporal contexts using knowledge graph convolutional models, which are not applicable to coarse-grained spatiotemporal contexts in privacy-constrained recommender systems. In this paper, we investigate privacy-preserving recommendation by leveraging coarse-grained spatiotemporal contexts. We propose the coarse-grained spatiotemporal knowledge graph for privacy-preserving recommendation(CSKG), which explicitly models spatiotemporal co-occurrences using common-sense knowledge from coarse-grained contexts. Specifically, we begin by constructing a spatiotemporal knowledge graph tailored to coarse-grained spatiotemporal contexts. Then we employ a learnable metagraph network that integrates common-sense information to filter and extract co-occurrences. CSKG evaluates the impact of coarsegrained spatiotemporal contexts on user behavior through the use of a knowledge graph convolutional network. Finally, we introduce joint learning to effectively learn representations. By conducting experiments on two real large-scale datasets,we achieve an average improvement of about 11.0% on two ranking metrics. The results clearly demonstrate that CSKG outperforms state-of-the-art baselines.
Bias detection and mitigation is an active area of research in machine learning. This work extends previous research done by the authors Van Busum and Fang (Proceedings of the 38th ACM/SIGAPP Symposium on Applied Comp...
详细信息
Named in-network computing service (NICS) is a potential computing paradigm emerged recently. Benefitted from the characteristics of named addressing and routing, NICS can be flexibly deployed on NDN router side and p...
详细信息
Demand forecasting has emerged as a crucial element in supply chain management. It is essential to identify anomalous data and continuously improve the forecasting model with new data. However, existing literature fai...
详细信息
暂无评论