360∘ videos have become increasingly popular recently, but consume much more bandwidth than non-360∘ videos. Usually, 360∘ video streaming partitions the video surface into multiple tiles and encodes the tiles inde...
详细信息
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received c...
详细信息
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received considerable attention in transmitting data and ensuring data confidentiality among cloud servers and users. Various traditional image retrieval techniques regarding security have developed in recent years but they do not apply to large-scale environments. This paper introduces a new approach called Triple network-based adaptive grey wolf (TN-AGW) to address these challenges. The TN-AGW framework combines the adaptability of the Grey Wolf Optimization (GWO) algorithm with the resilience of Triple Network (TN) to enhance image retrieval in cloud servers while maintaining robust security measures. By using adaptive mechanisms, TN-AGW dynamically adjusts its parameters to improve the efficiency of image retrieval processes, reducing latency and utilization of resources. However, the image retrieval process is efficiently performed by a triple network and the parameters employed in the network are optimized by Adaptive Grey Wolf (AGW) optimization. Imputation of missing values, Min–Max normalization, and Z-score standardization processes are used to preprocess the images. The image extraction process is undertaken by a modified convolutional neural network (MCNN) approach. Moreover, input images are taken from datasets such as the Landsat 8 dataset and the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset is employed for image retrieval. Further, the performance such as accuracy, precision, recall, specificity, F1-score, and false alarm rate (FAR) is evaluated, the value of accuracy reaches 98.1%, the precision of 97.2%, recall of 96.1%, and specificity of 917.2% respectively. Also, the convergence speed is enhanced in this TN-AGW approach. Therefore, the proposed TN-AGW approach achieves greater efficiency in image retrieving than other existing
This paper proposes a Poor and Rich Squirrel Algorithm (PRSA)-based Deep Maxout network to find fraud data transactions in the credit card system. Initially, input transaction data is passed to the data transformation...
详细信息
The drug traceability model is used for ensuring drug quality and its safety for customers in the medical supply chain. The healthcare supply chain is a complex network, which is susceptible to failures and leakage of...
详细信息
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory,...
详细信息
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory, acceptable, and harmonious biometric recognition method with a promising national and social security future. The purpose of this paper is to improve the existing face recognition algorithm, investigate extensive data-driven face recognition methods, and propose a unique automated face recognition methodology based on generative adversarial networks (GANs) and the center symmetric multivariable local binary pattern (CS-MLBP). To begin, this paper employs the center symmetric multivariant local binary pattern (CS-MLBP) algorithm to extract the texture features of the face, addressing the issue that C2DPCA (column-based two-dimensional principle component analysis) does an excellent job of removing the global characteristics of the face but struggles to process the local features of the face under large samples. The extracted texture features are combined with the international features retrieved using C2DPCA to generate a multifeatured face. The proposed method, GAN-CS-MLBP, syndicates the power of GAN with the robustness of CS-MLBP, resulting in an accurate and efficient face recognition system. Deep learning algorithms, mainly neural networks, automatically extract discriminative properties from facial images. The learned features capture low-level information and high-level meanings, permitting the model to distinguish among dissimilar persons more successfully. To assess the proposed technique’s GAN-CS-MLBP performance, extensive experiments are performed on benchmark face recognition datasets such as LFW, YTF, and CASIA-WebFace. Giving to the findings, our method exceeds state-of-the-art facial recognition systems in terms of recognition accuracy and resilience. The proposed automatic face recognition system GAN-CS-MLBP provides a solid basis for a
Integrating visible light communication (VLC) with the reconfigurable intelligent surface (RIS) significantly enhances physical layer security by enabling precise directional signal control and dynamic adaptation to t...
详细信息
In recent days, the expansion of Internet of Things (IoT) and the quick advancement of computer system applications contribute to the current phenomenon of data growth. The field of intrusion detection has expanded co...
详细信息
An image can convey a thousand words. This statement emphasizes the importance of illustrating ideas visually rather than writing them down. Although detailed image representation is typically instructive, there are s...
详细信息
To predict the lithium-ion(Li-ion) battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great ***,under different operation conditions,Li-ion batteries pr...
详细信息
To predict the lithium-ion(Li-ion) battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great ***,under different operation conditions,Li-ion batteries present distinct degradation patterns,and it is challenging to capture negligible capacity fade in early *** the data-driven method showing promising performance,insufficient data is still a big issue since the ageing experiments on the batteries are too slow and *** this study,we proposed twin autoencoders integrated into a two-stage method to predict the early cycles' degradation *** two-stage method can properly predict the degradation from course to *** twin autoencoders serve as a feature extractor and a synthetic data generator,***,a learning procedure based on the long-short term memory(LSTM) network is designed to hybridize the learning process between the real and synthetic *** performance of the proposed method is verified on three datasets,and the experimental results show that the proposed method can achieve accurate predictions compared to its competitors.
In analyzing phenomena around us, clustering is among the most commonly used techniques in machine learning for comparing, and categorizing them into different groups based on intrinsic features. One of the main chall...
详细信息
暂无评论