Software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty *** are exploring machine learning to predict softwa...
详细信息
Software project outcomes heavily depend on natural language requirements,often causing diverse interpretations and issues like ambiguities and incomplete or faulty *** are exploring machine learning to predict software bugs,but a more precise and general approach is *** bug prediction is crucial for software evolution and user training,prompting an investigation into deep and ensemble learning ***,these studies are not generalized and efficient when extended to other ***,this paper proposed a hybrid approach combining multiple techniques to explore their effectiveness on bug identification *** methods involved feature selection,which is used to reduce the dimensionality and redundancy of features and select only the relevant ones;transfer learning is used to train and test the model on different datasets to analyze how much of the learning is passed to other datasets,and ensemble method is utilized to explore the increase in performance upon combining multiple classifiers in a *** National Aeronautics and Space Administration(NASA)and four Promise datasets are used in the study,showing an increase in the model’s performance by providing better Area Under the Receiver Operating Characteristic Curve(AUC-ROC)values when different classifiers were *** reveals that using an amalgam of techniques such as those used in this study,feature selection,transfer learning,and ensemble methods prove helpful in optimizing the software bug prediction models and providing high-performing,useful end mode.
Unstructured Numerical Image Dataset Separation (UNIDS) method employing an enhanced unsupervised clustering technique. The objective is to delineate an optimal number of distinct groups within the input grayscale (G-...
详细信息
The survival rate of lung cancer relies significantly on how far the disease has spread when it is detected, how it reacts to the treatment, the patient’s overall health, and other factors. Therefore, the earlier the...
详细信息
The survival rate of lung cancer relies significantly on how far the disease has spread when it is detected, how it reacts to the treatment, the patient’s overall health, and other factors. Therefore, the earlier the lung cancer diagnosis, the higher the survival rate. For radiologists, recognizing malignant lung nodules from computed tomography (CT) scans is a challenging and time-consuming process. As a result, computer-aided diagnosis (CAD) systems have been suggested to alleviate these burdens. Deep-learning approaches have demonstrated remarkable results in recent years, surpassing traditional methods in different fields. Researchers are currently experimenting with several deep-learning strategies to increase the effectiveness of CAD systems in lung cancer detection with CT. This work proposes a deep-learning framework for detecting and diagnosing lung cancer. The proposed framework used recent deep-learning techniques in all its layers. The autoencoder technique structure is tuned and used in the preprocessing stage to denoise and reconstruct the medical lung cancer dataset. Besides, it depends on the transfer learning pre-trained models to make multi-classification among different lung cancer cases such as benign, adenocarcinoma, and squamous cell carcinoma. The proposed model provides high performance while recognizing and differentiating between two types of datasets, including biopsy and CT scans. The Cancer Imaging Archive and Kaggle datasets are utilized to train and test the proposed model. The empirical results show that the proposed framework performs well according to various performance metrics. According to accuracy, precision, recall, F1-score, and AUC metrics, it achieves 99.60, 99.61, 99.62, 99.70, and 99.75%, respectively. Also, it depicts 0.0028, 0.0026, and 0.0507 in mean absolute error, mean squared error, and root mean square error metrics. Furthermore, it helps physicians effectively diagnose lung cancer in its early stages and allows spe
Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, f...
详细信息
Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprintsand faces have been widely used for person identification, which has the risk of information leakage as a resultof reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiablepattern, which will not be reproducible falsely by capturing psychological and behavioral information of a personusing vision and sensor-based techniques. In existing studies, most of the researchers used very complex patternsin this direction, which need special training and attention to remember the patterns and failed to capturethe psychological and behavioral information of a person properly. To overcome these problems, this researchdevised a novel dynamic hand gesture-based person identification system using a Leap Motion sensor. Thisstudy developed two hand gesture-based pattern datasets for performing the experiments, which contained morethan 500 samples, collected from 25 subjects. Various static and dynamic features were extracted from the handgeometry. Randomforest was used to measure feature importance using the Gini Index. Finally, the support vectormachinewas implemented for person identification and evaluate its performance using identification accuracy. Theexperimental results showed that the proposed system produced an identification accuracy of 99.8% for arbitraryhand gesture-based patterns and 99.6% for the same dynamic hand gesture-based patterns. This result indicatedthat the proposed system can be used for person identification in the field of security.
The increase in number of people using the Internet leads to increased cyberattack *** Persistent Threats,or APTs,are among the most dangerous targeted *** attacks utilize various advanced tools and techniques for att...
详细信息
The increase in number of people using the Internet leads to increased cyberattack *** Persistent Threats,or APTs,are among the most dangerous targeted *** attacks utilize various advanced tools and techniques for attacking targets with specific *** countries with advanced technologies,like the US,Russia,the UK,and India,are susceptible to this targeted *** is a sophisticated attack that involves multiple stages and specific ***,TTP(Tools,Techniques,and Procedures)involved in the APT attack are commonly new and developed by an attacker to evade the security ***,APTs are generally implemented in multiple *** one of the stages is detected,we may apply a defense mechanism for subsequent stages,leading to the entire APT attack *** detection at the early stage of APT and the prediction of the next step in the APT kill chain are ongoing *** survey paper will provide knowledge about APT attacks and their essential *** follows the case study of known APT attacks,which will give clear information about the APT attack process—in later sections,highlighting the various detection methods defined by different researchers along with the limitations of the *** used in this article comes from the various annual reports published by security experts and blogs and information released by the enterprise networks targeted by the attack.
With the emergence of the artificial intelligence era,all kinds of robots are traditionally used in agricultural ***,studies concerning the robot task assignment problem in the agriculture field,which is closely relat...
详细信息
With the emergence of the artificial intelligence era,all kinds of robots are traditionally used in agricultural ***,studies concerning the robot task assignment problem in the agriculture field,which is closely related to the cost and efficiency of a smart farm,are ***,a Multi-Weeding Robot Task Assignment(MWRTA)problem is addressed in this paper to minimize the maximum completion time and residual herbicide.A mathematical model is set up,and a Multi-Objective Teaching-Learning-Based Optimization(MOTLBO)algorithm is presented to solve the *** the MOTLBO algorithm,a heuristicbased initialization comprising an improved Nawaz Enscore,and Ham(NEH)heuristic and maximum loadbased heuristic is used to generate an initial population with a high level of quality and *** effective teaching-learning-based optimization process is designed with a dynamic grouping mechanism and a redefined individual updating rule.A multi-neighborhood-based local search strategy is provided to balance the exploitation and exploration of the ***,a comprehensive experiment is conducted to compare the proposed algorithm with several state-of-the-art algorithms in the *** results demonstrate the significant superiority of the proposed algorithm for solving the problem under consideration.
The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,s...
详细信息
The Intelligent Internet of Things(IIoT)involves real-world things that communicate or interact with each other through networking technologies by collecting data from these“things”and using intelligent approaches,such as Artificial Intelligence(AI)and machine learning,to make accurate *** science is the science of dealing with data and its relationships through intelligent *** state-of-the-art research focuses independently on either data science or IIoT,rather than exploring their ***,to address the gap,this article provides a comprehensive survey on the advances and integration of data science with the Intelligent IoT(IIoT)system by classifying the existing IoT-based data science techniques and presenting a summary of various *** paper analyzes the data science or big data security and privacy features,including network architecture,data protection,and continuous monitoring of data,which face challenges in various IoT-based *** insights into IoT data security,privacy,and challenges are visualized in the context of data science for *** addition,this study reveals the current opportunities to enhance data science and IoT market *** current gap and challenges faced in the integration of data science and IoT are comprehensively presented,followed by the future outlook and possible solutions.
Fetal health care is vital in ensuring the health of pregnant women and the *** check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential *** know the status of t...
详细信息
Fetal health care is vital in ensuring the health of pregnant women and the *** check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential *** know the status of the fetus,doctors monitor blood reports,Ultrasounds,cardiotocography(CTG)data,***,in this research,we have considered CTG data,which provides information on heart rate and uterine contractions during *** researchers have proposed various methods for classifying the status of fetus *** processing of CTG data is time-consuming and ***,automated tools should be used to classify fetal *** study proposes a novel neural network-based architecture,the Dynamic Multi-Layer Perceptron model,evaluated from a single layer to several layers to classify fetal *** strategies were applied,including pre-processing data using techniques like Balancing,Scaling,Normalization hyperparameter tuning,batch normalization,early stopping,etc.,to enhance the model’s performance.A comparative analysis of the proposed method is done against the traditional machine learning models to showcase its accuracy(97%).An ablation study without any pre-processing techniques is also *** study easily provides valuable interpretations for healthcare professionals in the decision-making process.
This study investigates the combined berth allocation problem (BAP) and quay crane allocation problem (QCAP) while considering a multi-quay setting. First, a mixed integer linear programming mathematical model is deve...
详细信息
Gene expression profiling for cancer diagnosis requires the identification of optimal and non-redundant gene subsets from microarray data. We present a multi-objective particle swarm optimization (PSO) approach that b...
详细信息
暂无评论