Huazhong University of science and technology (HUST) is a key research-based comprehensive university in Wuhan, China,under the direct supervision of the Ministry of Education of China. Renowned as the epitome of the ...
详细信息
Huazhong University of science and technology (HUST) is a key research-based comprehensive university in Wuhan, China,under the direct supervision of the Ministry of Education of China. Renowned as the epitome of the development of higher education in new China, it is a “211” Project,“985” Project,“Double First-Class” university in China.
Recently, redactable blockchain has been proposed and leveraged in a wide range of real systems for its unique properties of decentralization, traceability, and transparency while ensuring controllable on-chain data r...
详细信息
Recently, redactable blockchain has been proposed and leveraged in a wide range of real systems for its unique properties of decentralization, traceability, and transparency while ensuring controllable on-chain data redaction. However, the development of redactable blockchain is now obstructed by three limitations, which are data privacy breaches, high communication overhead, and low searching efficiency, respectively. In this paper, we propose PriChain, the first efficient privacy-preserving fine-grained redactable blockchain in decentralized settings. PriChain provides data owners with rights to control who can read and redact on-chain data while maintaining downward compatibility, ensuring the one who can redact will be able to read. Specifically, inspired by the concept of multi-authority attribute-based encryption, we utilize the isomorphism of the access control tree, realizing fine-grained redaction mechanism, downward compatibility, and collusion resistance. With the newly designed structure, PriChain can realize O(n) communication and storage overhead compared to prior O(n2) schemes. Furthermore, we integrate multiple access trees into a tree-based dictionary, optimizing searching efficiency. Theoretical analysis proves that PriChain is secure against the chosen-plaintext attack and has competitive complexity. The experimental evaluations show that PriChain realizes 10× efficiency improvement of searching and 100× lower communication and storage overhead on average compared with existing schemes.
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical...
详细信息
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical *** paper analyzes two fundamental failure cases in the baseline AD model and identifies key reasons that limit the recognition accuracy of existing approaches. Specifically, by Case-1, we found that the main reason detrimental to current AD methods is that the inputs to the recovery model contain a large number of detailed features to be recovered, which leads to the normal/abnormal area has not/has been recovered into its original state. By Case-2, we surprisingly found that the abnormal area that cannot be recognized in image-level representations can be easily recognized in the feature-level representation. Based on the above observations, we propose a novel recover-then-discriminate(ReDi) framework for *** takes a self-generated feature map(e.g., histogram of oriented gradients) and a selected prompted image as explicit input information to address the identified in Case-1. Additionally, a feature-level discriminative network is introduced to amplify abnormal differences between the recovered and input representations. Extensive experiments on two widely used yet challenging AD datasets demonstrate that ReDi achieves state-of-the-art recognition accuracy.
To reveal the modification mechanism of Buton rock asphalt (BRA), limestone mineral (LM), and pure natural asphalt (NA) which are the two major components of BRA were obtained using extraction and combustion methods. ...
详细信息
As a crucial storage and buffering apparatus for balancing the production and consumption of byproduct gases in industrial processes, accurate prediction of gas tank levels is essential for optimizing energy system sc...
详细信息
As a crucial storage and buffering apparatus for balancing the production and consumption of byproduct gases in industrial processes, accurate prediction of gas tank levels is essential for optimizing energy system scheduling. Considering that the continuous switching of the pressure and valve status(mechanism knowledge) would bring about multiple working conditions of the equipment, a multi-condition time sequential network ensembled method is proposed. In order to especially consider the time dependence of different conditions, a centralwise condition sequential network is developed, where the network branches are specially designed based on the condition switching sequences. A branch combination transfer learning strategy is developed to tackle the sample imbalance problem of different condition data. Since the condition or status data are real-time information that cannot be recognized during the prediction process, a pre-trained and ensemble learning approach is further proposed to fuse the outputs of the multi-condition networks and realize a transient-state involved prediction. The performance of the proposed method is validated on practical energy data coming from a domestic steel plant, comparing with the state-of-the-art algorithms. The results show that the proposed method can maintain a high prediction accuracy under different condition switching cases, which would provide effective guidance for the optimal scheduling of the industrial energy systems.
Aiming at the consensus control problem of nonlinear multi-agent systems(MASs) under directed topology, a leader-follower bipartite consensus control strategy is proposed. This strategy takes into account the potentia...
详细信息
Aiming at the consensus control problem of nonlinear multi-agent systems(MASs) under directed topology, a leader-follower bipartite consensus control strategy is proposed. This strategy takes into account the potential for denial-of-service(DoS) attacks and completely unknown system dynamics. Specifically, the bipartite consensus dynamics describes the cooperation and competition relationship between followers and the leader, that is, the follower chooses to move in accordance with or opposite to the leader according to its trajectory. In order to optimize the communication bandwidth and mitigate the impact of DoS attacks, the proposed consensus control scheme integrates the DoS attack detection mechanism and event-triggered mechanism. In addition, neural networks(NNs) are used to solve the nonlinear problem, and a speed function is designed to achieve the desired tracking performance, ensuring that all agents' tracking errors converge to a predefined set in a finite time. With the help of backstepping, graph theory, and Lyapunov stability theory, sufficient conditions for achieving bipartite consensus without Zeno behavior are established. Finally, the accuracy and feasibility of the theoretical analysis are verified by simulation cases.
This article tackles the boundary event-based bipartite consensus tracking control problem for the flexible manipulator multi-agent network over a signed diagraph. Each follower agent is the flexible manipulator with ...
详细信息
This article tackles the boundary event-based bipartite consensus tracking control problem for the flexible manipulator multi-agent network over a signed diagraph. Each follower agent is the flexible manipulator with unknown disturbances,modeling uncertainties, input saturations and backlashes, and asymmetric output constraints. To reduce the continuous updating of control inputs, a new dynamic event-triggering mechanism is used. Under multiple constraints, achieving the asymptotic convergence point by point in space of the manipulator's vibration state is a control challenge. To solve this issue, we propose a new asymptotic convergence lemma. In control design, radial basis neural networks are employed to estimate nonlinear uncertain terms and the barrier Lyapunov function is used to accomplish the output constraints. Based on the Lyapunov direct method, a novel distributed boundary event-based control algorithm is designed to guarantee that the closed-loop network can reach the asymptotical bipartite consensus tracking and vibration suppression. Moreover, Zeno behaviors can be excluded for each agent. Finally, some numerical results are presented to demonstrate the validity and superiority of the designed control algorithm.
The maximum principle has bridged mathematical optimization to optimal control,ushering in significant developments and refinements in optimal control theory,notably during the 1960s with the advent of linear quadrati...
The maximum principle has bridged mathematical optimization to optimal control,ushering in significant developments and refinements in optimal control theory,notably during the 1960s with the advent of linear quadratic (LQ)control and linear quadratic estimation (LQE).This progression propelled optimal control theory into further advancements,encompassing stochastic control,robust/H-infinity control,model predictive control (MPC),networked control,and reinforcement learning *** control,established upon a rigorous mathematical foundation,extends static optimization theory to dynamic systems,exhibiting scientific essence,unity,and ***,since its inception,optimal control theory has served as an indispensable core role across all control-related domains,including communication-constrained control in networked systems,consensus control,cooperative control,and reinforcement learning control.
Exploring efficient and nonprecious metal electrocatalysts of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is crucial for developing rechargeable zinc-air batteries(ZABs).Herein,an alloying-degree c...
详细信息
Exploring efficient and nonprecious metal electrocatalysts of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is crucial for developing rechargeable zinc-air batteries(ZABs).Herein,an alloying-degree control strategy was employed to fabricate nitrogen-doped carbon sphere(NCS)decorated with dual-phase Co/Co_(7)Fe_(3)heterojunctions(CoFe@NCS).The phase composition of materials has been adjusted by controlling the alloying *** optimal CoFe_(0.08)@NCS electrocatalyst displays a half-wave potential of 0.80 V for ORR and an overpotential of 283 mV at 10 mA·cm^(-2)for OER in an alkaline *** intriguing bifunctional electrocatalytic activity and durability is attributed to the hierarchically porous structure and interfacial electron coupling of highly-active Co_(7)Fe_(3)alloy and metallic Co *** the CoFe_(0.08)@NCS material is used as air-cathode catalyst of rechargeable liquid-state zinc-air battery(ZAB),the device shows a high peak power-density(157 mW·cm^(-2))and maintains a stable voltage gap over 150 h,outperforming those of the benchmark(Pt/C+RuO_(2))-based *** particular,the as-fabricated solid-state flexible ZAB delivers a reliable compatibility under different bending *** work provides a promising strategy to develop metal/alloy-based electrocatalysts for the application in renewable energy conversion technologies.
暂无评论