Named in-network computing service (NICS) is a potential computing paradigm emerged recently. Benefitted from the characteristics of named addressing and routing, NICS can be flexibly deployed on NDN router side and p...
详细信息
Brain tumor classification is crucial for personalized treatment *** deep learning-based Artificial Intelligence(AI)models can automatically analyze tumor images,fine details of small tumor regions may be overlooked d...
详细信息
Brain tumor classification is crucial for personalized treatment *** deep learning-based Artificial Intelligence(AI)models can automatically analyze tumor images,fine details of small tumor regions may be overlooked during global feature ***,we propose a brain tumor Magnetic Resonance Imaging(MRI)classification model based on a global-local parallel dual-branch *** global branch employs ResNet50 with a Multi-Head Self-Attention(MHSA)to capture global contextual information from whole brain images,while the local branch utilizes VGG16 to extract fine-grained features from segmented brain tumor *** features from both branches are processed through designed attention-enhanced feature fusion module to filter and integrate important ***,to address sample imbalance in the dataset,we introduce a category attention block to improve the recognition of minority *** results indicate that our method achieved a classification accuracy of 98.04%and a micro-average Area Under the Curve(AUC)of 0.989 in the classification of three types of brain tumors,surpassing several existing pre-trained Convolutional Neural Network(CNN)***,feature interpretability analysis validated the effectiveness of the proposed *** suggests that the method holds significant potential for brain tumor image classification.
Recently, multirobot systems(MRSs) have found extensive applications across various domains, including industrial manufacturing, collaborative formation of unmanned equipment, emergency disaster relief, and war scenar...
详细信息
Recently, multirobot systems(MRSs) have found extensive applications across various domains, including industrial manufacturing, collaborative formation of unmanned equipment, emergency disaster relief, and war scenarios [1]. These advancements are largely supported by the development of consistency control theory. However, traditional dynamicsfree models may cause instability in complex robotic systems. Lagrangian dynamics offers a better approach for modeling these systems, as it facilitates controller design and optimization analysis. Despite this, challenges persist with unknown parameters and nonlinear friction within the systems.
Due to the probability characteristics of quantum mechanism, the combination of quantum mechanism and intelligent algorithm has received wide attention. Quantum dynamics theory uses the Schr?dinger equation as a quant...
详细信息
Due to the probability characteristics of quantum mechanism, the combination of quantum mechanism and intelligent algorithm has received wide attention. Quantum dynamics theory uses the Schr?dinger equation as a quantum dynamics equation. Through three approximation of the objective function, quantum dynamics framework(QDF) is obtained which describes basic iterative operations of optimization algorithms. Based on QDF, this paper proposes a potential barrier estimation(PBE) method which originates from quantum mechanism. With the proposed method, the particle can accept inferior solutions during the sampling process according to a probability which is subject to the quantum tunneling effect, to improve the global search capacity of optimization *** effectiveness of the proposed method in the ability of escaping local minima was thoroughly investigated through double well function(DWF), and experiments on two benchmark functions sets show that this method significantly improves the optimization performance of high dimensional complex functions. The PBE method is quantized and easily transplanted to other algorithms to achieve high performance in the future.
Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion...
详细信息
Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion recognition approaches often struggle in few-shot cross-domain scenarios due to their limited capacity to generalize semantic features across different domains. Additionally, these methods face challenges in accurately capturing complex emotional states, particularly those that are subtle or implicit. To overcome these limitations, we introduce a novel approach called Dual-Task Contrastive Meta-Learning (DTCML). This method combines meta-learning and contrastive learning to improve emotion recognition. Meta-learning enhances the model’s ability to generalize to new emotional tasks, while instance contrastive learning further refines the model by distinguishing unique features within each category, enabling it to better differentiate complex emotional expressions. Prototype contrastive learning, in turn, helps the model address the semantic complexity of emotions across different domains, enabling the model to learn fine-grained emotions expression. By leveraging dual tasks, DTCML learns from two domains simultaneously, the model is encouraged to learn more diverse and generalizable emotions features, thereby improving its cross-domain adaptability and robustness, and enhancing its generalization ability. We evaluated the performance of DTCML across four cross-domain settings, and the results show that our method outperforms the best baseline by 5.88%, 12.04%, 8.49%, and 8.40% in terms of accuracy.
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,in...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound *** existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,*** address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule *** MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding *** transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the *** approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the ***,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation *** results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)*** findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theo...
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theories and methodologies [2]. Instead of replacing existing software modules implemented by symbolic logic, incorporating FMs' capabilities to build software systems requires entirely new modules that leverage the unique capabilities of ***, while FMs excel at handling uncertainty, recognizing patterns, and processing unstructured data, we need new engineering theories that support the paradigm shift from explicitly programming and maintaining user-defined symbolic logic to creating rich, expressive requirements that FMs can accurately perceive and implement.
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorization of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings.
Industrial cyber-physical systems closely integrate physical processes with cyberspace, enabling real-time exchange of various information about system dynamics, sensor outputs, and control decisions. The connection b...
详细信息
Industrial cyber-physical systems closely integrate physical processes with cyberspace, enabling real-time exchange of various information about system dynamics, sensor outputs, and control decisions. The connection between cyberspace and physical processes results in the exposure of industrial production information to unprecedented security risks. It is imperative to develop suitable strategies to ensure cyber security while meeting basic performance *** the perspective of control engineering, this review presents the most up-to-date results for privacy-preserving filtering,control, and optimization in industrial cyber-physical systems. Fashionable privacy-preserving strategies and mainstream evaluation metrics are first presented in a systematic manner for performance evaluation and engineering *** discussion discloses the impact of typical filtering algorithms on filtering performance, specifically for privacy-preserving Kalman filtering. Then, the latest development of industrial control is systematically investigated from consensus control of multi-agent systems, platoon control of autonomous vehicles as well as hierarchical control of power systems. The focus thereafter is on the latest privacy-preserving optimization algorithms in the framework of consensus and their applications in distributed economic dispatch issues and energy management of networked power systems. In the end, several topics for potential future research are highlighted.
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation *** their trans...
详细信息
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation *** their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant *** challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy *** works often conflated safety issues with security *** contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of *** on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in ***,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats.
暂无评论