咨询与建议

限定检索结果

文献类型

  • 194 篇 会议
  • 108 篇 期刊文献

馆藏范围

  • 302 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 125 篇 工学
    • 75 篇 计算机科学与技术...
    • 64 篇 软件工程
    • 36 篇 控制科学与工程
    • 20 篇 电气工程
    • 20 篇 信息与通信工程
    • 20 篇 生物医学工程(可授...
    • 20 篇 生物工程
    • 18 篇 光学工程
    • 16 篇 电子科学与技术(可...
    • 14 篇 机械工程
    • 10 篇 化学工程与技术
    • 8 篇 动力工程及工程热...
    • 7 篇 仪器科学与技术
    • 7 篇 交通运输工程
    • 6 篇 材料科学与工程(可...
    • 6 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
  • 61 篇 理学
    • 26 篇 数学
    • 22 篇 生物学
    • 20 篇 物理学
    • 13 篇 统计学(可授理学、...
    • 12 篇 化学
  • 20 篇 管理学
    • 14 篇 管理科学与工程(可...
    • 5 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 7 篇 医学
    • 7 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 4 篇 教育学
    • 3 篇 教育学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 经济学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 历史学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 16 篇 accuracy
  • 14 篇 training
  • 10 篇 real-time system...
  • 8 篇 three-dimensiona...
  • 8 篇 trajectory
  • 8 篇 point cloud comp...
  • 7 篇 safety
  • 7 篇 neural networks
  • 7 篇 benchmark testin...
  • 6 篇 humanoid robots
  • 6 篇 visualization
  • 6 篇 feature extracti...
  • 6 篇 autonomous vehic...
  • 6 篇 solid modeling
  • 5 篇 deep learning
  • 5 篇 planning
  • 5 篇 cameras
  • 5 篇 tracking
  • 5 篇 predictive model...
  • 5 篇 machine learning

机构

  • 14 篇 national key lab...
  • 13 篇 munich institute...
  • 13 篇 school of softwa...
  • 13 篇 technical univer...
  • 11 篇 munich institute...
  • 10 篇 munich institute...
  • 8 篇 munich institute...
  • 7 篇 semiconductor te...
  • 6 篇 national key lab...
  • 6 篇 chair of ai proc...
  • 5 篇 munich institute...
  • 5 篇 school of softwa...
  • 5 篇 indian institute...
  • 5 篇 national key lab...
  • 5 篇 intelligent robo...
  • 5 篇 institute of art...
  • 5 篇 engineering rese...
  • 5 篇 cvir lab changch...
  • 5 篇 wormpex ai resea...
  • 5 篇 shanghai aerospa...

作者

  • 27 篇 eckehard steinba...
  • 23 篇 sami haddadin
  • 17 篇 hussam amrouch
  • 15 篇 shaoyi du
  • 11 篇 amrouch hussam
  • 8 篇 micheler carina ...
  • 8 篇 chen badong
  • 7 篇 haddadin sami
  • 7 篇 zhiqiang tian
  • 7 篇 du shaoyi
  • 7 篇 muhammet sami ya...
  • 6 篇 xiao xu
  • 6 篇 li li
  • 6 篇 markus ryll
  • 6 篇 paul r. genssler
  • 6 篇 johannes betz
  • 6 篇 badong chen
  • 6 篇 yogesh singh cha...
  • 6 篇 sabri mustafa ka...
  • 6 篇 dong yang

语言

  • 268 篇 英文
  • 34 篇 其他
  • 1 篇 中文
检索条件"机构=School of Engineering and Design and Institute of Robotics and Machine Intelligence"
302 条 记 录,以下是151-160 订阅
排序:
Correction to: On the use of adjoint gradients for time-optimal control problems regarding a discrete control parameterization
收藏 引用
Multibody System Dynamics 2023年 第3期59卷 335-336页
作者: Lichtenecker, Daniel Rixen, Daniel Eichmeir, Philipp Nachbagauer, Karin TUM School of Engineering and Design Department of Mechanical Engineering Chair of Applied Mechanics Munich Institute of Robotics and Machine Intelligence (MIRMI) Technical University of Munich Munich Germany Institute of Mechanics and Mechatronics Vienna University of Technology Wien Austria Faculty of Engineering and Environmental Sciences University of Applied Sciences Upper Austria Wels Austria Institute for Advanced Study Technical University of Munich Garching Germany
来源: 评论
Algorithm to Technology Co-Optimization for CiM-Based Hyperdimensional Computing
Algorithm to Technology Co-Optimization for CiM-Based Hyperd...
收藏 引用
design, Automation and Test in Europe Conference and Exhibition
作者: Mahta Mayahinia Simon Thomann Paul R. Genssler Christopher Münch Hussam Amrouch Mehdi B. Tahoori Department of Computer Science and Informatics Karlsruhe Institute of Technology Karlsruhe Germany Chair of AI Processor Design TUM School of Computation Information and Technology Technical University of Munich Munich Institute of Robotics and Machine Intelligence Munich Germany Semiconductor Test and Reliability University of Stuttgart Stuttgart Germany
Hyperdimensional computing (HDC) has been recognized as an efficient machine learning algorithm in recent years. Robustness against noise and simple computational operations, while being limited by the memory bandwidt... 详细信息
来源: 评论
machine learning with Monarch Butterfly Optimization for Prediction of Emergency Patient Admission Status  5
Machine learning with Monarch Butterfly Optimization for Pre...
收藏 引用
5th IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2023
作者: Vijayarangam, S. Vasundhara, S. Beherac, Nihar Ranjan Das, Shyamali Chandre, Shanker Rajagopal, R. Sri Indu College of Engineering and Technology Department of Computer Science and Engineering Telangana Hyderabad India G.Narayanamma Institute of Technology and Science Department of Humanities and Mathematics Telangana Hyderabad India Swiss School of Business and Management Geneva Petit-Lancy1213 Switzerland CMR Institute of Technology AECS Layout Department of Artificial Intelligence and Machine Learning Karnataka Bangalore India SR University Department of Computer Science & Artificial Intelligence Telangana Warangal India Alliance College of Engineering & Design Department of Computer Science & Engineering Alliance University Karnataka Bengaluru India
Emergency admission is one of the most important resources of healthcare expenditure. The accessibility of predictive methods is support to recognize the admission status of arriving patients and the patient mix that ... 详细信息
来源: 评论
DynamicAvatars: Accurate Dynamic Facial Avatars Reconstruction and Precise Editing with Diffusion Models
arXiv
收藏 引用
arXiv 2024年
作者: Qian, Yangyang Sun, Yuan Guo, Yu School of Software Engineering Xi’an Jiaotong University China National Key Laboratory of Human-Machine Hybrid Augmented Intelligence Xi’an Jiaotong University China National Engineering Research Center for Visual Information and Applications Xi’an Jiaotong University China Institute of Artificial Intelligence and Robotics Xi’an Jiaotong University China
Generating and editing dynamic 3D head avatars are crucial tasks in virtual reality and film production. However, existing methods often suffer from facial distortions, inaccurate head movements, and limited fine-grai... 详细信息
来源: 评论
Towards Generalizable Multi-Object Tracking
arXiv
收藏 引用
arXiv 2024年
作者: Qin, Zheng Wang, Le Zhou, Sanping Fu, Panpan Hua, Gang Tang, Wei National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi’an Jiaotong University China School of Software Engineering Xi’an Jiaotong University China Wormpex AI Research University of Illinois Chicago United States
Multi-Object Tracking (MOT) encompasses various tracking scenarios, each characterized by unique traits. Effective trackers should demonstrate a high degree of generalizability across diverse scenarios. However, exist... 详细信息
来源: 评论
Compositional Safety Verification of Infinite Networks: A Data-Driven Approach
Compositional Safety Verification of Infinite Networks: A Da...
收藏 引用
European Control Conference (ECC)
作者: Ali Aminzadeh Abdalla Swikir Sami Haddadin Abolfazl Lavaei University of Technology Iran Munich Institute of Robotics and Machine Intelligence Technical University of Munich Germany Department of Electrical and Electronic Engineering Omar Al-Mukhtar University (OMU) Albaida Libya School of Computing Newcastle University United Kingdom
This paper develops a compositional framework for formal safety verification of an interconnected network comprised of a countably infinite number of discrete-time nonlinear subsystems with unknown mathematical models... 详细信息
来源: 评论
HSIDMamba: Exploring Bidirectional State-Space Models for Hyperspectral Denoising
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Yang Xiao, Jiahua Guo, Yu Jiang, Peilin Yang, Haiwei Wang, Fei National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi’an Jiaotong University Shaanxi Xi’an710049 China School of software Xi’an Jiaotong University Shaanxi Xi’an710049 China
Effectively discerning spatial-spectral dependencies in HSI denoising is crucial, but prevailing methods using convolution or transformers still face computational efficiency limitations. Recently, the emerging Select... 详细信息
来源: 评论
Structure Consistent Unsupervised Domain Adaptation for Driver Behavior Recognition
Structure Consistent Unsupervised Domain Adaptation for Driv...
收藏 引用
International Conference on Intelligent Transportation
作者: Yuying Liu Shaoyi Du Qinbo Guo Zhiyue Zhao Zhiqiang Tian Nanning Zheng National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications and Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University Xi'an China School of Software Engineering Xi'an Jiaotong University Xi'an China
Driver distraction recognition is critical for assisted driving and intelligent vehicles, while often fails in cross-domain scenarios. Previous studies only focus on behavior recognition on a single data set, ignoring...
来源: 评论
Return of Small-Scale Crowd Counting via Fast and Accurate Semi-Supervised Least Squares Model
Return of Small-Scale Crowd Counting via Fast and Accurate S...
收藏 引用
IEEE Symposium Series on Computational intelligence (SSCI)
作者: Hao Luo Shaoyi Du Zhiqiang Tian School of Software Engineering Xi'an Jiaotong University Xi'an China National Key Laboratory of Human-Machine Hybrid Augmented Intelligence Institute of Artificial Intelligence and Robotics National Engineering Research Center for Visual Information and Applications Xi'an Jiaotong University Xi'an China
Existing crowd counting techniques have achieved significant progress with the emergence of deep learning. During development, emerging crowd counting methods have generally become more and more complex and enormous, ...
来源: 评论
A Multi-View fMRI Model with Voxel Inner State for Vision Encoding
A Multi-View fMRI Model with Voxel Inner State for Vision En...
收藏 引用
Chinese Automation Congress (CAC)
作者: Yueying Li Hao Wu Badong Chen National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University Xi'an China School of Electrical Engineering Xi'an University of Technology Xi'an China
Visual encoding and decoding is an important tool to explore brain neural function, how to establish an efficient and accurate encoding model is an important issue in fMRI brain visual encoding tasks. However, due to ...
来源: 评论