咨询与建议

限定检索结果

文献类型

  • 194 篇 会议
  • 108 篇 期刊文献

馆藏范围

  • 302 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 125 篇 工学
    • 75 篇 计算机科学与技术...
    • 64 篇 软件工程
    • 36 篇 控制科学与工程
    • 20 篇 电气工程
    • 20 篇 信息与通信工程
    • 20 篇 生物医学工程(可授...
    • 20 篇 生物工程
    • 18 篇 光学工程
    • 16 篇 电子科学与技术(可...
    • 14 篇 机械工程
    • 10 篇 化学工程与技术
    • 8 篇 动力工程及工程热...
    • 7 篇 仪器科学与技术
    • 7 篇 交通运输工程
    • 6 篇 材料科学与工程(可...
    • 6 篇 建筑学
    • 6 篇 安全科学与工程
    • 5 篇 土木工程
  • 61 篇 理学
    • 26 篇 数学
    • 22 篇 生物学
    • 20 篇 物理学
    • 13 篇 统计学(可授理学、...
    • 12 篇 化学
  • 20 篇 管理学
    • 14 篇 管理科学与工程(可...
    • 5 篇 工商管理
    • 5 篇 图书情报与档案管...
  • 7 篇 医学
    • 7 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 4 篇 教育学
    • 3 篇 教育学
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 经济学
  • 1 篇 哲学
  • 1 篇 文学
  • 1 篇 历史学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 16 篇 accuracy
  • 14 篇 training
  • 10 篇 real-time system...
  • 8 篇 three-dimensiona...
  • 8 篇 trajectory
  • 8 篇 point cloud comp...
  • 7 篇 safety
  • 7 篇 neural networks
  • 7 篇 benchmark testin...
  • 6 篇 humanoid robots
  • 6 篇 visualization
  • 6 篇 feature extracti...
  • 6 篇 autonomous vehic...
  • 6 篇 solid modeling
  • 5 篇 deep learning
  • 5 篇 planning
  • 5 篇 cameras
  • 5 篇 tracking
  • 5 篇 predictive model...
  • 5 篇 machine learning

机构

  • 14 篇 national key lab...
  • 13 篇 munich institute...
  • 13 篇 school of softwa...
  • 13 篇 technical univer...
  • 11 篇 munich institute...
  • 10 篇 munich institute...
  • 8 篇 munich institute...
  • 7 篇 semiconductor te...
  • 6 篇 national key lab...
  • 6 篇 chair of ai proc...
  • 5 篇 munich institute...
  • 5 篇 school of softwa...
  • 5 篇 indian institute...
  • 5 篇 national key lab...
  • 5 篇 intelligent robo...
  • 5 篇 institute of art...
  • 5 篇 engineering rese...
  • 5 篇 cvir lab changch...
  • 5 篇 wormpex ai resea...
  • 5 篇 shanghai aerospa...

作者

  • 27 篇 eckehard steinba...
  • 23 篇 sami haddadin
  • 17 篇 hussam amrouch
  • 15 篇 shaoyi du
  • 11 篇 amrouch hussam
  • 8 篇 micheler carina ...
  • 8 篇 chen badong
  • 7 篇 haddadin sami
  • 7 篇 zhiqiang tian
  • 7 篇 du shaoyi
  • 7 篇 muhammet sami ya...
  • 6 篇 xiao xu
  • 6 篇 li li
  • 6 篇 markus ryll
  • 6 篇 paul r. genssler
  • 6 篇 johannes betz
  • 6 篇 badong chen
  • 6 篇 yogesh singh cha...
  • 6 篇 sabri mustafa ka...
  • 6 篇 dong yang

语言

  • 268 篇 英文
  • 34 篇 其他
  • 1 篇 中文
检索条件"机构=School of Engineering and Design and Institute of Robotics and Machine Intelligence"
302 条 记 录,以下是291-300 订阅
排序:
A lightweight soft exoskeleton in lower limb assistance
A lightweight soft exoskeleton in lower limb assistance
收藏 引用
Chinese Automation Congress (CAC)
作者: Yu Zhang Zhuo Wang Chunjie Chen Tao Fang Ruimei Sun Yanjie Li School of Mechanical Engineering and Automation Harbin Institute of Technology Shenzhen China Guangdong Provincial Key Lab of Robotics and Intelligent System Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institutes of Advanced Technology Shenzhen China ShenZhen College of Advanced Technology University of Chinese Academy of Sciences Shenzhen China BeiJing Aerospace Wanyuan Science Technology Co. Ltd. Beijing China
The soft exoskeleton is a wearable robot which is functioned to improve the capacity of human walking or loading. The metabolic of human is increase with the additional load, one integrated design method is used to re... 详细信息
来源: 评论
Music, Computing, and Health: A Roadmap for the Current and Future Roles of Music Technology for Health Care and Well-Being
收藏 引用
Music and Science 2021年 4卷
作者: Agres, Kat R. Schaefer, Rebecca S. Volk, Anja van Hooren, Susan Holzapfel, Andre Dalla Bella, Simone Müller, Meinard de Witte, Martina Herremans, Dorien Ramirez Melendez, Rafael Neerincx, Mark Ruiz, Sebastian Meredith, David Dimitriadis, Theo Magee, Wendy L. Yong Siew Toh Conservatory of Music National University of Singapore Singapore Social and Cognitive Computing Department Institute of High Performance Computing A*STAR Singapore Institute for Psychology Health Medical Neuropsychology Unit Leiden University Leiden Netherlands Leiden Institute for Brain and Cognition Leiden University Leiden Netherlands Academy of Creative and Performing Arts Leiden University Leiden Netherlands Department of Information and Computing Sciences Utrecht University Utrecht Netherlands Faculty of Health care Department of Arts Therapies Zuyd University of Applied Sciences Heerlen Netherlands KenVaK Research Centre for the Arts Therapies and Psychomotricity Heerlen Netherlands Faculty of Psychology Open University of The Netherlands Heerlen Netherlands Division of Media Technology and Interaction Design KTH Royal Institute of Technology Stockholm Sweden International Laboratory for Brain Music and Sound Research (BRAMS) Outremont QC Canada Department of Psychology University of Montreal Montreal QC Canada Centre for Research on Brain Language and Music (CRBLM) Montreal QC Canada University of Economics and Human Sciences in Warsaw Warsaw Poland International Audio Laboratories Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen Germany HAN University of Applied Sciences Department of Arts Therapies and Psychological Studies Nijmegen Netherlands University of Amsterdam Research Institute of Child Development and Education Amsterdam Netherlands Treatment Centre for People with Mild Intellectual Disabilities and Psychiatric and Behavioral Disorders Gennep Netherlands Information Systems Technology and Design Singapore University of Technology and Design Singapore Music and Machine Learning Lab Music Technology Group Universitat Pompeu Fabra Barcelona Spain Faculty of EEMCS Interactive Intelligence Group Delft University of Technology Delft Netherlands Centre for Digital Music School of Electronic Engineerin
The fields of music, health, and technology have seen significant interactions in recent years in developing music technology for health care and well-being. In an effort to strengthen the collaboration between the in... 详细信息
来源: 评论
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results
arXiv
收藏 引用
arXiv 2021年
作者: Mehta, Raghav Filos, Angelos Baid, Ujjwal Sako, Chiharu McKinley, Richard Rebsamen, Michael Dätwyler, Katrin Meier, Raphael Radojewski, Piotr Murugesan, Gowtham Krishnan Nalawade, Sahil Ganesh, Chandan Wagner, Ben Yu, Fang F. Fei, Baowei Madhuranthakam, Ananth J. Maldjian, Joseph A. Daza, Laura Gómez, Catalina Arbeláez, Pablo Dai, Chengliang Wang, Shuo Reynaud, Hadrien Mo, Yuanhan Angelini, Elsa Guo, Yike Bai, Wenjia Banerjee, Subhashis Pei, Linmin Murat, A.K. Rosas-González, Sarahi Zemmoura, Ilyess Tauber, Clovis Vu, Minh H. Nyholm, Tufve Löfstedt, Tommy Ballestar, Laura Mora Vilaplana, Veronica McHugh, Hugh Talou, Gonzalo Maso Wang, Alan Patel, Jay Chang, Ken Hoebel, Katharina Gidwani, Mishka Arun, Nishanth Gupta, Sharut Aggarwal, Mehak Singh, Praveer Gerstner, Elizabeth R. Kalpathy-Cramer, Jayashree Boutry, Nicolas Huard, Alexis Vidyaratne, Lasitha Rahman, Md Monibor Iftekharuddin, Khan M. Chazalon, Joseph Puybareau, Elodie Tochon, Guillaume Ma, Jun Cabezas, Mariano Llado, Xavier Oliver, Arnau Valencia, Liliana Valverde, Sergi Amian, Mehdi Soltaninejad, Mohammadreza Myronenko, Andriy Hatamizadeh, Ali Feng, Xue Dou, Quan Tustison, Nicholas Meyer, Craig Shah, Nisarg A. Talbar, Sanjay Weber, Marc-André Mahajan, Abhishek Jakab, Andras Wiest, Roland Fathallah-Shaykh, Hassan M. Nazeri, Arash Milchenko, Mikhail Marcus, Daniel Kotrotsou, Aikaterini Colen, Rivka Freymann, John Kirby, Justin Davatzikos, Christos Menze, Bjoern Bakas, Spyridon Gal, Yarin Arbel, Tal McGill University MontrealQC Canada Group University of Oxford Oxford United Kingdom University of Pennsylvania PhiladelphiaPA United States Department of Radiology Perelman School of Medicine The University of Pennsylvania PhiladelphiaPA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States University Institute of Diagnostic and Interventional Neuroradiology University of Bern Inselspital Bern University Hospital Bern Switzerland Department of Radiology University of Texas Southwestern Medical Center DallasTX United States Department of Bioengineering University of Texas DallasTX United States Advanced Imaging Research Center University of Texas Southwestern Medical Center DallasTX United States Universidad de los Andes Bogotá Colombia Data Science Institute Imperial College London London United Kingdom NIHR Imperial BRC ITMAT Data Science Group Imperial College London London United Kingdom Department of Brain Sciences Imperial College London London United Kingdom Machine Intelligence Unit Indian Statistical Institute Kolkata India Department of CSE University of Calcutta Kolkata India Department of Information Technology Uppsala University Uppsala Sweden Department of Diagnostic Radiology The University of Pittsburgh Medical Center PittsburghPA United States UMR U1253 iBrain Université de Tours Inserm Tours France Department of Radiation Sciences Umeå University Umeå Sweden Department of Computing Science Umeå University Umeå Sweden Signal Theory and Communications Department Universitat Politècnica de Catalunya Barcelona Tech Barcelona Spain Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand Radiology Department Auckland City Hospital Auckland New Zealand Auckland Bioengineering Institute University of Auckland New Zealand Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology
Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology ... 详细信息
来源: 评论
Unsupervised domain adaptation for medical imaging segmentation with self-ensembling
arXiv
收藏 引用
arXiv 2018年
作者: Perone, Christian S. Ballester, Pedro Barros, Rodrigo C. Cohen-Adad, Julien NeuroPoly Lab Institute of Biomedical Engineering Polytechnique Montreal MontrealQC Canada Machine Intelligence and Robotics Research Group School of Technology Pontifícia Universidade Católica do Rio Grande do Sul Porto Alegre RS Brazil Functional Neuroimaging Unit CRIUGM Universite de Montreal MontrealQC Canada
Recent advances in deep learning methods have come to define the state-of-the-art for many medical imaging applications, surpassing even human judgment in several tasks. Those models, however, when trained to reduce t... 详细信息
来源: 评论
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
arXiv
收藏 引用
arXiv 2018年
作者: Bakas, Spyridon Reyes, Mauricio Jakab, Andras Bauer, Stefan Rempfler, Markus Crimi, Alessandro Shinohara, Russell Takeshi Berger, Christoph Ha, Sung Min Rozycki, Martin Prastawa, Marcel Alberts, Esther Lipkova, Jana Freymann, John Kirby, Justin Bilello, Michel Fathallah-Shaykh, Hassan M. Wiest, Roland Kirschke, Jan Wiestler, Benedikt Colen, Rivka Kotrotsou, Aikaterini Lamontagne, Pamela Marcus, Daniel Milchenko, Mikhail Nazeri, Arash Weber, Marc-Andr Mahajan, Abhishek Baid, Ujjwal Gerstner, Elizabeth Kwon, Dongjin Acharya, Gagan Agarwal, Manu Alam, Mahbubul Albiol, Alberto Albiol, Antonio Albiol, Francisco J. Alex, Varghese Allinson, Nigel Amorim, Pedro H.A. Amrutkar, Abhijit Anand, Ganesh Andermatt, Simon Arbel, Tal Arbelaez, Pablo Avery, Aaron Azmat, Muneeza Pranjal, B. Bai, Wenjia Banerjee, Subhashis Barth, Bill Batchelder, Thomas Batmanghelich, Kayhan Battistella, Enzo Beers, Andrew Belyaev, Mikhail Bendszus, Martin Benson, Eze Bernal, Jose Bharath, Halandur Nagaraja Biros, George Bisdas, Sotirios Brown, James Cabezas, Mariano Cao, Shilei Cardoso, Jorge M. Carver, Eric N. Casamitjana, Adri Castillo, Laura Silvana Cat, Marcel Cattin, Philippe Cérigues, Albert Chagas, Vinicius S. Chandra, Siddhartha Chang, Yi-Ju Chang, Shiyu Chang, Ken Chazalon, Joseph Chen, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Cheng, Kun Choudhury, Ahana Roy Chylla, Roger Clrigues, Albert Colleman, Steven Colmeiro, Ramiro German Rodriguez Combalia, Marc Costa, Anthony Cui, Xiaomeng Dai, Zhenzhen Dai, Lutao Daza, Laura Alexandra Deutsch, Eric Ding, Changxing Dong, Chao Dong, Shidu Dudzik, Wojciech Eaton-Rosen, Zach Egan, Gary Escudero, Guilherme Estienne, Tho Everson, Richard Fabrizio, Jonathan Fan, Yong Fang, Longwei Feng, Xue Ferrante, Enzo Fidon, Lucas Fischer, Martin French, Andrew P. Fridman, Naomi Fu, Huan Fuentes, David Gao, Yaozong Gates, Evan Gering, David Gholami, Amir Gierke, Willi Glocker, Ben Gong, Mingming Gonzlez-Vill, Sandra Grosges, T. Guan, Yuanfang Guo, Sheng Gupta, Sudeep Han, Woo-Sup Han, Il Song Harmuth, Ko Center for Biomedical Image Computing and Analytics University of Pennsylvania PhiladelphiaPA United States Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Institute for Surgical Technology and Biomechanics University of Bern Bern Switzerland Center for MR-Research University Children's Hospital Zurich Zurich Switzerland Support Centre for Advanced Neuroimaging Inselspital Institute for Diagnostic and Interventional Neuroradiology Bern University Hospital Bern Switzerland University Hospital of Zurich Zurich Switzerland Center for Clinical Epidemiology and Biostatistics University of Pennsylvania Philadelphia United States Image-Based Biomedical Modeling Group Technical University of Munich Munich Germany Icahn School of Medicine Mount Sinai Health System New YorkNY United States Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research FrederickMD21701 United States Cancer Imaging Program National Cancer Institute National Institutes of Health BethesdaMD20814 United States Department of Neurology University of Alabama at Birmingham BirminghamAL United States Department of Diagnostic Radiology University of Texas MD Anderson Cancer Center HoustonTX United States Department of Psychology Washington University St. LouisMO United States Neuroimaging Informatics and Analysis Center Washington University St. LouisMO United States Department of Radiology Washington University St. LouisMO United States Institute of Diagnostic and Interventional Radiology Pediatric Radiology and Neuroradiology University Medical Center Rostock Ernst-Heydemann-Str. 6 Rostock18057 Germany Tata Memorial Centre Homi Bhabha National Institute Mumbai India Shri Guru Gobind Singhji Institute of Engineering and Technology Nanded India NVIDIA Santa Clara
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrot... 详细信息
来源: 评论
Impact of Grain Boundary Character on Electrical Property in Polycrystalline Silicon
收藏 引用
MRS Online Proceedings Library 2011年 第1期586卷 163-168页
作者: Shu Hamada Koichi Kawahara Sadahiro Tsurekawa Tadao Watanabe Takashi Sekiguchi Laboratory of Materials Design and Interface Engineering Department of Machine Intelligence and Systems Engineering Graduate School of Engineering Tohoku University Sendai Japan Institute for Materials Research Tohoku University Sendai Japan
Grain boundaries in polycrystalline silicon are most likely to generate localized states in band gap. The localized states play a dominant role in determining the performance of solar cells by acting as traps or recom...
来源: 评论
Development of a Sensor System for Measuring Tactile Sensation
Development of a Sensor System for Measuring Tactile Sensati...
收藏 引用
IEEE SENSORS
作者: Yoshihiro Tanaka Mami Tanaka Seiji Chonan Department of Mechanical Engineering Nagoya Institute of Technology Nagoya Japan Department of Bioengineering and Robotics Graduate School of Engineering University of Tohoku Sendai Japan Department of Machine Intelligence and Systems Engineering Akita Prefectural University Yurihonjo Akita Japan
This paper presents the development of a sensor system for measuring tactile sensation. First, various tactile feelings of fabrics are collected through questionnaires and the factor analysis is introduced to classify... 详细信息
来源: 评论
Pokrovsky-Talapov Critical Behavior and Rough-to-Rough Ridges of the Σ3 Coincidence Tilt Boundary in Mo
收藏 引用
Physical Review Letters 2004年 第19期92卷 196101-196101页
作者: Boris B. Straumal Valery N. Semenov Olga A. Kogtenkova Tadao Watanabe Institute of Solid State Physics Russian Academy of Sciences 142432 Chernogolovka Moscow district Russia Laboratory of Materials Design and Interface Engineering Department of Machine Intelligence and Systems Engineering Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
The as-grown shape of the cylindric tilt grain boundary (GB) in Mo bicrystals grown by the floating zone method has been studied with the electron backscattering diffraction method. The seed crystals were misoriented ... 详细信息
来源: 评论
THE STORY of PINO
收藏 引用
International Journal of Humanoid robotics 2004年 第3期1卷 449-463页
作者: Kitano, Hiroaki Yamasaki, Fuminori Matsui, Tatsuya Endo, K.E.N. Matsuoka, Yukiko Kaminaga, Hiroshi Kato, Yuichiro ERATO-SORST Kitano Symbiotic Systems Project 6-31-15 Jingumae Shibuya Tokyo150-0001 Japan Emergent Robotics Area Department of Adaptive Machine Systems Graduate School of Engineering Osaka University 2-1 Yamadaoka Suita Osaka565-0871 Japan Flower Robotics Inc. J-House 301 6-8-15 Minami Aoyama Shibuya Tokyo150 Japan Future Robotics Research Center Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba275-0016 Japan Integrated Design Engineering Keio University 3-14-1 Hiyoshi Kohokuku Yokoyama 223-0061 Japan ERATO-SORST Kitano Symbiotic Systems Project 6-31-15 Jingumae Shibuya Tokyo150-0001 Japan ZMP Inc. 7F Katsuta Building 1-3-39 Mita Minato-ku Tokyo108-0073 Japan ZMP Inc. 7F Katsuta Building 1-3-39 Mita Minato-ku Tokyo108-0073 Japan
PINO is a small-sized, low-cost humanoid robot developed for research. The salient feature of PINO is the use of low-cost components, extensive esthetic design, the disclosure of technical information under GNU Genera... 详细信息
来源: 评论
Analysis and optimization of a non-time based motion controller for a nonholonomic mobile robot
Analysis and optimization of a non-time based motion control...
收藏 引用
IEEE International Symposium on Computational intelligence in robotics and Automation (CIRA)
作者: Hao Li S.X. Yang F. Karray Advanced Robotics and Intelligent Systems (AFUS) Laboratory School of Engineering University of Guelph Canada Pattem Analysis and Machine Intelligence (PAMI) Laboratory Department of Systems Design Engineering University of Waterloo Canada
In this paper, a non-time based tracking controller of a nonholonomic mobile robot is first analyzed. Non-time based motion controllers have been successfully applied to many areas such as robot motion control, multi-... 详细信息
来源: 评论