Multi-input multi-output (MIMO) antennas operating in the millimeter wave (mmWave) band face challenges related to inter-element interference, limited isolation due to close spacing, and mutual coupling, all of which ...
详细信息
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received c...
详细信息
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received considerable attention in transmitting data and ensuring data confidentiality among cloud servers and users. Various traditional image retrieval techniques regarding security have developed in recent years but they do not apply to large-scale environments. This paper introduces a new approach called Triple network-based adaptive grey wolf (TN-AGW) to address these challenges. The TN-AGW framework combines the adaptability of the Grey Wolf Optimization (GWO) algorithm with the resilience of Triple Network (TN) to enhance image retrieval in cloud servers while maintaining robust security measures. By using adaptive mechanisms, TN-AGW dynamically adjusts its parameters to improve the efficiency of image retrieval processes, reducing latency and utilization of resources. However, the image retrieval process is efficiently performed by a triple network and the parameters employed in the network are optimized by Adaptive Grey Wolf (AGW) optimization. Imputation of missing values, Min–Max normalization, and Z-score standardization processes are used to preprocess the images. The image extraction process is undertaken by a modified convolutional neural network (MCNN) approach. Moreover, input images are taken from datasets such as the Landsat 8 dataset and the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset is employed for image retrieval. Further, the performance such as accuracy, precision, recall, specificity, F1-score, and false alarm rate (FAR) is evaluated, the value of accuracy reaches 98.1%, the precision of 97.2%, recall of 96.1%, and specificity of 917.2% respectively. Also, the convergence speed is enhanced in this TN-AGW approach. Therefore, the proposed TN-AGW approach achieves greater efficiency in image retrieving than other existing
Due to recent expansion of wireless communications, it has become impossible to cope with the allotment of the precious spectrum while resources for wireless communication are bounded and finite. Hence, the cognitive ...
详细信息
This study proposes a malicious code detection model DTL-MD based on deep transfer learning, which aims to improve the detection accuracy of existing methods in complex malicious code and data scarcity. In the feature...
详细信息
The drug traceability model is used for ensuring drug quality and its safety for customers in the medical supply chain. The healthcare supply chain is a complex network, which is susceptible to failures and leakage of...
详细信息
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory,...
详细信息
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory, acceptable, and harmonious biometric recognition method with a promising national and social security future. The purpose of this paper is to improve the existing face recognition algorithm, investigate extensive data-driven face recognition methods, and propose a unique automated face recognition methodology based on generative adversarial networks (GANs) and the center symmetric multivariable local binary pattern (CS-MLBP). To begin, this paper employs the center symmetric multivariant local binary pattern (CS-MLBP) algorithm to extract the texture features of the face, addressing the issue that C2DPCA (column-based two-dimensional principle component analysis) does an excellent job of removing the global characteristics of the face but struggles to process the local features of the face under large samples. The extracted texture features are combined with the international features retrieved using C2DPCA to generate a multifeatured face. The proposed method, GAN-CS-MLBP, syndicates the power of GAN with the robustness of CS-MLBP, resulting in an accurate and efficient face recognition system. Deep learning algorithms, mainly neural networks, automatically extract discriminative properties from facial images. The learned features capture low-level information and high-level meanings, permitting the model to distinguish among dissimilar persons more successfully. To assess the proposed technique’s GAN-CS-MLBP performance, extensive experiments are performed on benchmark face recognition datasets such as LFW, YTF, and CASIA-WebFace. Giving to the findings, our method exceeds state-of-the-art facial recognition systems in terms of recognition accuracy and resilience. The proposed automatic face recognition system GAN-CS-MLBP provides a solid basis for a
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
The precise detection and measurement of dopamine(DA),a crucial neurotransmitter in the human body,plays a significant role in diagnosing,preventing,and treating neurological diseases associated with its levels.A hi...
详细信息
The precise detection and measurement of dopamine(DA),a crucial neurotransmitter in the human body,plays a significant role in diagnosing,preventing,and treating neurological diseases associated with its levels.A highly sensitive DA electrochemical sensor was constructed by combining molybdenum disulfide quantum dots(MSQDs) with multiwalled carbon nanotubes(MWCNTs).The MSQDs were synthesized using the shear exfoliation *** sensors consist of MSQDs with Mo-S edge catalytic centers for the DA redox reaction,and MWCNTs amplify the sensor *** linearity of the sensor for the detection of DA was tested in the presence of ascorbic acid(AA,50 μmol·L-1) and uric acid(UA,200 μmol·L-1),and exhibited linearity from 2 to 966 μmol·L-1of DA with 0.097 μA(mol·L-1)-1sensitivity and a low limit of detection of0.6 μmol·L-1(the ratio between signal and noise,S/N=3).Moreover,the sensitivity and selectivity of the sensor were also studied using *** is no increase in amperometric current after adding the most potentially interfering *** sensor was successfully applied to recover DA in human blood sera ***,machine learning algorithms were operated to aid in the near-precise detection of DA in the heterogeneous mixture containing AA and *** algorithms facilitate the identification and quantification of DA amidst coexisting interferents,including AA,that are commonly present in biological matrices.
In task offloading, the movement of vehicles causes the switching of connected RSUs and servers, which may lead to task offloading failure or high service delay. In this paper, we analyze the impact of vehicle movemen...
详细信息
In task offloading, the movement of vehicles causes the switching of connected RSUs and servers, which may lead to task offloading failure or high service delay. In this paper, we analyze the impact of vehicle movements on task offloading and reveal that data preparation time for task execution can be minimized via forward-looking scheduling. Then, a Bi-LSTM-based model is proposed to predict the trajectories of vehicles. The service area is divided into several equal-sized grids. If the actual position of the vehicle and the predicted position by the model belong to the same grid, the prediction is considered correct, thereby reducing the difficulty of vehicle trajectory prediction. Moreover, we propose a scheduling strategy for delay optimization based on the vehicle trajectory prediction. Considering the inevitable prediction error, we take some edge servers around the predicted area as candidate execution servers and the data required for task execution are backed up to these candidate servers, thereby reducing the impact of prediction deviations on task offloading and converting the modest increase of resource overheads into delay reduction in task offloading. Simulation results show that, compared with other classical schemes, the proposed strategy has lower average task offloading delays.
Vehicular Named Data Networks (VNDN) is a content centric approach for vehicle networks. The fundamental principle of addressing the content rather than the host, suits vehicular environment. There are numerous challe...
详细信息
暂无评论