The increase in number of people using the Internet leads to increased cyberattack *** Persistent Threats,or APTs,are among the most dangerous targeted *** attacks utilize various advanced tools and techniques for att...
详细信息
The increase in number of people using the Internet leads to increased cyberattack *** Persistent Threats,or APTs,are among the most dangerous targeted *** attacks utilize various advanced tools and techniques for attacking targets with specific *** countries with advanced technologies,like the US,Russia,the UK,and India,are susceptible to this targeted *** is a sophisticated attack that involves multiple stages and specific ***,TTP(Tools,Techniques,and Procedures)involved in the APT attack are commonly new and developed by an attacker to evade the security ***,APTs are generally implemented in multiple *** one of the stages is detected,we may apply a defense mechanism for subsequent stages,leading to the entire APT attack *** detection at the early stage of APT and the prediction of the next step in the APT kill chain are ongoing *** survey paper will provide knowledge about APT attacks and their essential *** follows the case study of known APT attacks,which will give clear information about the APT attack process—in later sections,highlighting the various detection methods defined by different researchers along with the limitations of the *** used in this article comes from the various annual reports published by security experts and blogs and information released by the enterprise networks targeted by the attack.
With its untameable and traceable properties,blockchain technology has been widely used in the field of data *** to preserve individual privacy while enabling efficient data queries is one of the primary issues with s...
详细信息
With its untameable and traceable properties,blockchain technology has been widely used in the field of data *** to preserve individual privacy while enabling efficient data queries is one of the primary issues with secure data *** this paper,we study verifiable keyword frequency(KF)queries with local differential privacy in *** the numerical and the keyword attributes are present in data objects;the latter are sensitive and require privacy ***,prior studies in blockchain have the problem of trilemma in privacy protection and are unable to handle KF *** propose an efficient framework that protects data owners’privacy on keyword attributes while enabling quick and verifiable query processing for KF *** framework computes an estimate of a keyword’s frequency and is efficient in query time and verification object(VO)size.A utility-optimized local differential privacy technique is used for privacy *** data owner adds noise locally into data based on local differential privacy so that the attacker cannot infer the owner of the keywords while keeping the difference in the probability distribution of the KF within the privacy *** propose the VB-cm tree as the authenticated data structure(ADS).The VB-cm tree combines the Verkle tree and the Count-Min sketch(CM-sketch)to lower the VO size and query *** VB-cm tree uses the vector commitment to verify the query *** fixed-size CM-sketch,which summarizes the frequency of multiple keywords,is used to estimate the KF via hashing *** conduct an extensive evaluation of the proposed *** experimental results show that compared to theMerkle B+tree,the query time is reduced by 52.38%,and the VO size is reduced by more than one order of magnitude.
Recently,Generative Adversarial Networks(GANs)have become the mainstream text-to-image(T2I)***,a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approache...
详细信息
Recently,Generative Adversarial Networks(GANs)have become the mainstream text-to-image(T2I)***,a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approaches the ground-truth image ***,the multistage generation strategy results in complex T2I ***,this study proposes a novel feature-grounded single-stage T2I model,which considers the“real”distribution learned from training images as one input and introduces a worst-case-optimized similarity measure into the loss function to enhance the model's generation *** results on two benchmark datasets demonstrate the competitive performance of the proposed model in terms of the Frechet inception distance and inception score compared to those of some classical and state-of-the-art models,showing the improved similarities among the generated image,text,and ground truth.
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces....
详细信息
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces. Large-scale data collection and annotation make the application of machine learning algorithms prohibitively expensive when adapting to new tasks. One way of circumventing this limitation is to train the model in a semi-supervised learning manner that utilizes a percentage of unlabeled data to reduce the labeling burden in prediction tasks. Despite their appeal, these models often assume that labeled and unlabeled data come from similar distributions, which leads to the domain shift problem caused by the presence of distribution gaps. To address these limitations, we propose herein a novel method for people-centric activity recognition,called domain generalization with semi-supervised learning(DGSSL), that effectively enhances the representation learning and domain alignment capabilities of a model. We first design a new autoregressive discriminator for adversarial training between unlabeled and labeled source domains, extracting domain-specific features to reduce the distribution gaps. Second, we introduce two reconstruction tasks to capture the task-specific features to avoid losing information related to representation learning while maintaining task-specific consistency. Finally, benefiting from the collaborative optimization of these two tasks, the model can accurately predict both the domain and category labels of the source domains for the classification task. We conduct extensive experiments on three real-world sensing datasets. The experimental results show that DGSSL surpasses the three state-of-the-art methods with better performance and generalization.
Over the years, numerous optimization problems have been addressed utilizing meta-heuristic algorithms. Continuing initiatives have always been to create and develop new, practical algorithms. This work proposes a nov...
详细信息
Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. Howeve...
详细信息
Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. However, the traditional ISAC schemes are highly dependent on the accurate mathematical model and suffer from the challenges of high complexity and poor performance in practical scenarios. Recently, artificial intelligence (AI) has emerged as a viable technique to address these issues due to its powerful learning capabilities, satisfactory generalization capability, fast inference speed, and high adaptability for dynamic environments, facilitating a system design shift from model-driven to data-driven. Intelligent ISAC, which integrates AI into ISAC, has been a hot topic that has attracted many researchers to investigate. In this paper, we provide a comprehensive overview of intelligent ISAC, including its motivation, typical applications, recent trends, and challenges. In particular, we first introduce the basic principle of ISAC, followed by its key techniques. Then, an overview of AI and a comparison between model-based and AI-based methods for ISAC are provided. Furthermore, the typical applications of AI in ISAC and the recent trends for AI-enabled ISAC are reviewed. Finally, the future research issues and challenges of intelligent ISAC are discussed.
Recent advances in wireless sensor networks (WSNs) have brought the sensor based monitoring developments to the surface in many applications. In such a scenario, the security of communication is a major challenge in t...
详细信息
Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, f...
详细信息
Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprintsand faces have been widely used for person identification, which has the risk of information leakage as a resultof reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiablepattern, which will not be reproducible falsely by capturing psychological and behavioral information of a personusing vision and sensor-based techniques. In existing studies, most of the researchers used very complex patternsin this direction, which need special training and attention to remember the patterns and failed to capturethe psychological and behavioral information of a person properly. To overcome these problems, this researchdevised a novel dynamic hand gesture-based person identification system using a Leap Motion sensor. Thisstudy developed two hand gesture-based pattern datasets for performing the experiments, which contained morethan 500 samples, collected from 25 subjects. Various static and dynamic features were extracted from the handgeometry. Randomforest was used to measure feature importance using the Gini Index. Finally, the support vectormachinewas implemented for person identification and evaluate its performance using identification accuracy. Theexperimental results showed that the proposed system produced an identification accuracy of 99.8% for arbitraryhand gesture-based patterns and 99.6% for the same dynamic hand gesture-based patterns. This result indicatedthat the proposed system can be used for person identification in the field of security.
All the software products developed will need testing to ensure the quality and accuracy of the product. It makes the life of testers much easier when they can optimize on the effort spent and predict defects for the ...
详细信息
In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the d...
详细信息
In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the digital twin communication system implementation is completely *** verification is currently recognized as a method to ensure the correctness of software system for communication in digital twins because it uses rigorous mathematical methods to verify the correctness of systems for communication in digital twins and can effectively help system designers determine whether the system is designed and implemented *** this paper,we use the interactive theorem proving tool Isabelle/HOL to construct the formal model of the X86 architecture,and to model the related assembly *** verification result shows that the system states obtained after the operations of relevant assembly instructions is consistent with the expected states,indicating that the system meets the design expectations.
暂无评论