The manual process of evaluating answer scripts is strenuous. Evaluators use the answer key to assess the answers in the answer scripts. Advancements in technology and the introduction of new learning paradigms need a...
详细信息
Underwater target detection is an important method for detecting marine organisms. However, due to the image occlusion of underwater targets, blurred water quality, poor lighting conditions, small targets, and complex...
详细信息
Semi-supervised learning (SSL) aims to reduce reliance on labeled data. Achieving high performance often requires more complex algorithms, therefore, generic SSL algorithms are less effective when it comes to image cl...
详细信息
With the continuous advancement of satellite technology, remote sensing images has been increasingly applied in fields such as urban planning, environmental monitoring, and disaster response. However, remote sensing i...
详细信息
With the continuous advancement of satellite technology, remote sensing images has been increasingly applied in fields such as urban planning, environmental monitoring, and disaster response. However, remote sensing images often feature small target sizes and complex backgrounds, posing significant computational challenges for object detection tasks. To address this issue, this paper proposes a lightweight remote sensing images object detection algorithm based on YOLOv9. The proposed algorithm incorporates the SimRMB module, which effectively reduces computational complexity while improving the efficiency and accuracy of feature extraction. Through a dynamic attention mechanism, SimRMB is capable of focusing on important regions while minimizing background interference, and by integrating residual learning and skip connections, it ensures the stability of deep networks. To further enhance detection performance, the FasterRepNCSPELAN4 module is introduced, which employs PConv operations to reduce computational load and memory usage. It also utilizes dilated convolutions and DFC attention mechanisms to strengthen feature extraction, thereby increasing the efficiency and accuracy of object detection. Additionally, this study integrates the GhostModuleV2 module, which generates core feature maps and employs lightweight operations to create redundant features, greatly reducing the computational complexity of *** results show that on the SIMD dataset, the improved YOLOv9 model has a parameter size of 167.88 MB and GFLOPs of 208.6. Compared to the baseline YOLOv9 model (parameter size: 194.57 MB, GFLOPs: 239.0), the parameter size is reduced by 13.71%, GFLOPs are reduced by 12.72%, and detection accuracy is improved by 1.4%. These results demonstrate that the proposed lightweight YOLOv9 model effectively reduces computational overhead while maintaining excellent detection performance, providing an efficient solution for object detection tasks in resou
Huazhong University of science and technology (HUST) is a key research-based comprehensive university in Wuhan, China,under the direct supervision of the Ministry of Education of China. Renowned as the epitome of the ...
详细信息
Huazhong University of science and technology (HUST) is a key research-based comprehensive university in Wuhan, China,under the direct supervision of the Ministry of Education of China. Renowned as the epitome of the development of higher education in new China, it is a “211” Project,“985” Project,“Double First-Class” university in China.
Session-based recommendation is a popular research topic that aims to predict users’next possible interactive item by exploiting anonymous *** existing studies mainly focus on making predictions by considering users...
详细信息
Session-based recommendation is a popular research topic that aims to predict users’next possible interactive item by exploiting anonymous *** existing studies mainly focus on making predictions by considering users’single interactive *** recent efforts have been made to exploit multiple interactive behaviors,but they generally ignore the influences of different interactive behaviors and the noise in interactive *** address these problems,we propose a behavior-aware graph neural network for session-based ***,different interactive sequences are modeled as directed ***,the item representations are learned via graph neural ***,a sparse self-attention module is designed to remove the noise in behavior ***,the representations of different behavior sequences are aggregated with the gating mechanism to obtain the session *** results on two public datasets show that our proposed method outperforms all competitive *** source code is available at the website of GitHub.
The health care system encompasses the participation of individuals,groups,agencies,and resources that offer services to address the requirements of the person,community,and population in terms of *** to the rising de...
详细信息
The health care system encompasses the participation of individuals,groups,agencies,and resources that offer services to address the requirements of the person,community,and population in terms of *** to the rising debates on the healthcare systems in relation to diseases,treatments,interventions,medication,and clinical practice guidelines,the world is currently discussing the healthcare industry,technology perspectives,and healthcare *** gain a comprehensive understanding of the healthcare systems research paradigm,we offered a novel contextual topic modeling approach that links up the CombinedTM model with our healthcare Bert to discover the contextual topics in the domain of *** research work discovered 60 contextual topics among them fteen topics are the hottest which include smart medical monitoring systems,causes,and effects of stress and anxiety,and healthcare cost estimation and twelve topics are the ***,thirty-three topics are showing in-significant *** further investigated various clusters and correlations among the topics exploring inter-topic distance maps which add depth to the understanding of the research structure of this scientific *** current study enhances the prior topic modeling methodologies that examine the healthcare literature from a particular disciplinary *** further extends the existing topic modeling approaches that do not incorporate contextual information in the topic discovery process adding contextual information by creating sentence embedding vectors through transformers-based *** also utilized corpus tuning,the mean pooling technique,and the hugging face *** method gives a higher coherence score as compared to the state-of-the-art models(LSA,LDA,and Ber Topic).
Research on panicle detection is one of the most important aspects of paddy phenotypic analysis.A phenotyping method that uses unmanned aerial vehicles can be an excellent alternative to field-based ***,it entails man...
详细信息
Research on panicle detection is one of the most important aspects of paddy phenotypic analysis.A phenotyping method that uses unmanned aerial vehicles can be an excellent alternative to field-based ***,it entails many other challenges,including different illuminations,panicle sizes,shape distortions,partial occlusions,and complex *** detection algorithms are directly affected by these *** work proposes a model for detecting panicles called Border Sensitive Knowledge Distillation(BSKD).It is designed to prioritize the preservation of knowledge in border areas through the use of feature *** feature-based knowledge distillation method allows us to compress the model without sacrificing its *** imitation mask is used to distinguish panicle-related foreground features from irrelevant background features.A significant improvement in Unmanned Aerial Vehicle(UAV)images is achieved when students imitate the teacher’s *** the UAV rice imagery dataset,the proposed BSKD model shows superior performance with 76.3%mAP,88.3%precision,90.1%recall and 92.6%F1 score.
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w...
详细信息
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two sta
Edge caching is a promising technique for effectively reducing backhaul pressure and content access latency in the Internet of Vehicles (IoV). The existing content caching solutions still face the following challenges...
详细信息
暂无评论