While deep learning techniques have shown promising performance in the Major Depressive Disorder (MDD) detection task, they still face limitations in real-world scenarios. Specifically, given the data scarcity, some e...
详细信息
As people become increasingly reliant on the Internet, securely storing and publishing private data has become an important issue. In real life, the release of graph data can lead to privacy breaches, which is a highl...
详细信息
As people become increasingly reliant on the Internet, securely storing and publishing private data has become an important issue. In real life, the release of graph data can lead to privacy breaches, which is a highly challenging problem. Although current research has addressed the issue of identity disclosure, there are still two challenges: First, the privacy protection for large-scale datasets is not yet comprehensive; Second, it is difficult to simultaneously protect the privacy of nodes, edges, and attributes in social networks. To address these issues, this paper proposes a(k,t)-graph anonymity algorithm based on enhanced clustering. The algorithm uses k-means++ clustering for k-anonymity and t-closeness to improve k-anonymity. We evaluate the privacy and efficiency of this method on two datasets and achieved good results. This research is of great significance for addressing the problem of privacy breaches that may arise from the publication of graph data.
Nowadays,the personalized recommendation has become a research hotspot for addressing information *** this,generating effective recommendations from sparse data remains a ***,auxiliary information has been widely used...
详细信息
Nowadays,the personalized recommendation has become a research hotspot for addressing information *** this,generating effective recommendations from sparse data remains a ***,auxiliary information has been widely used to address data sparsity,but most models using auxiliary information are linear and have limited *** to the advantages of feature extraction and no-label requirements,autoencoder-based methods have become quite ***,most existing autoencoder-based methods discard the reconstruction of auxiliary information,which poses huge challenges for better representation learning and model *** address these problems,we propose Serial-Autoencoder for Personalized Recommendation(SAPR),which aims to reduce the loss of critical information and enhance the learning of feature ***,we first combine the original rating matrix and item attribute features and feed them into the first autoencoder for generating a higher-level representation of the ***,we use a second autoencoder to enhance the reconstruction of the data representation of the prediciton rating *** output rating information is used for recommendation *** experiments on the MovieTweetings and MovieLens datasets have verified the effectiveness of SAPR compared to state-of-the-art models.
Intelligent education is a significant application of artificial intelligence. One of the key research topics in intelligence education is cognitive diagnosis, which aims to gauge the level of proficiency among studen...
详细信息
Intelligent education is a significant application of artificial intelligence. One of the key research topics in intelligence education is cognitive diagnosis, which aims to gauge the level of proficiency among students on specific knowledge concepts(e.g., Geometry). To the best of our knowledge, most of the existing cognitive models primarily focus on improving diagnostic accuracy while rarely considering fairness issues; for instance, the diagnosis of students may be affected by various sensitive attributes(e.g., region). In this paper,we aim to explore fairness in cognitive diagnosis and answer two questions:(1) Are the results of existing cognitive diagnosis models affected by sensitive attributes?(2) If yes, how can we mitigate the impact of sensitive attributes to ensure fair diagnosis results? To this end, we first empirically reveal that several wellknown cognitive diagnosis methods usually lead to unfair performances, and the trend of unfairness varies among different cognitive diagnosis models. Then, we make a theoretical analysis to explain the reasons behind this phenomenon. To resolve the unfairness problem in existing cognitive diagnosis models, we propose a general fairness-aware cognitive diagnosis framework, FairCD. Our fundamental principle involves eliminating the effect of sensitive attributes on student proficiency. To achieve this, we divide student proficiency in existing cognitive diagnosis models into two components: bias proficiency and fair *** design two orthogonal tasks for each of them to ensure that fairness in proficiency remains independent of sensitive attributes and take it as the final diagnosed result. Extensive experiments on the Program for International Student Assessment(PISA) dataset clearly show the effectiveness of our framework.
Tables,typically two-dimensional and structured to store large amounts of data,are essential in daily activities like database queries,spreadsheet manipulations,Web table question answering,and image table information...
详细信息
Tables,typically two-dimensional and structured to store large amounts of data,are essential in daily activities like database queries,spreadsheet manipulations,Web table question answering,and image table information *** these table-centric tasks with Large Language Models(LLMs)or Visual Language Models(VLMs)offers significant public benefits,garnering interest from academia and *** survey provides a comprehensive overview of table-related tasks,examining both user scenarios and technical *** covers traditional tasks like table question answering as well as emerging fields such as spreadsheet manipulation and table data *** summarize the training techniques for LLMs and VLMs tailored for table ***,we discuss prompt engineering,particularly the use of LLM-powered agents,for various tablerelated ***,we highlight several challenges,including diverse user input when serving and slow thinking using chainof-thought.
Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,w...
详细信息
Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of ***,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars ***,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual ***,the initial weight parameters of the model were optimised by the transfer learning training method to further improve *** experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 *** with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy.
Person re-identification is a prevalent technology deployed on intelligent *** have been remarkable achievements in person re-identification methods based on the assumption that all person images have a sufficiently h...
详细信息
Person re-identification is a prevalent technology deployed on intelligent *** have been remarkable achievements in person re-identification methods based on the assumption that all person images have a sufficiently high resolution,yet such models are not applicable to the open *** real world,the changing distance between pedestrians and the camera renders the resolution of pedestrians captured by the camera *** low-resolution(LR)images in the query set are matched with high-resolution(HR)images in the gallery set,it degrades the performance of the pedestrian matching task due to the absent pedestrian critical information in LR *** address the above issues,we present a dualstream coupling network with wavelet transform(DSCWT)for the cross-resolution person re-identification ***,we use the multi-resolution analysis principle of wavelet transform to separately process the low-frequency and high-frequency regions of LR images,which is applied to restore the lost detail information of LR ***,we devise a residual knowledge constrained loss function that transfers knowledge between the two streams of LR images and HR images for accessing pedestrian invariant features at various *** qualitative and quantitative experiments across four benchmark datasets verify the superiority of the proposed approach.
data partitioning techniques are pivotal for optimal data placement across storage devices,thereby enhancing resource utilization and overall system ***,the design of effective partition schemes faces multiple challen...
详细信息
data partitioning techniques are pivotal for optimal data placement across storage devices,thereby enhancing resource utilization and overall system ***,the design of effective partition schemes faces multiple challenges,including considerations of the cluster environment,storage device characteristics,optimization objectives,and the balance between partition quality and computational ***,dynamic environments necessitate robust partition detection *** paper presents a comprehensive survey structured around partition deployment environments,outlining the distinguishing features and applicability of various partitioning strategies while delving into how these challenges are *** discuss partitioning features pertaining to database schema,table data,workload,and runtime *** then delve into the partition generation process,segmenting it into initialization and optimization stages.A comparative analysis of partition generation and update algorithms is provided,emphasizing their suitability for different scenarios and optimization ***,we illustrate the applications of partitioning in prevalent database products and suggest potential future research directions and *** survey aims to foster the implementation,deployment,and updating of high-quality partitions for specific system scenarios.
Domain adaptation aims to transfer knowledge from the labeled source domain to an unlabeled target domain that follows a similar but different ***,adversarial-based methods have achieved remarkable success due to the ...
详细信息
Domain adaptation aims to transfer knowledge from the labeled source domain to an unlabeled target domain that follows a similar but different ***,adversarial-based methods have achieved remarkable success due to the excellent performance of domain-invariant feature presentation ***,the adversarial methods learn the transferability at the expense of the discriminability in feature representation,leading to low generalization to the target *** this end,we propose a Multi-view Feature Learning method for the Over-penalty in Adversarial Domain ***,multi-view representation learning is proposed to enrich the discriminative information contained in domain-invariant feature representation,which will counter the over-penalty for discriminability in adversarial ***,the class distribution in the intra-domain is proposed to replace that in the inter-domain to capture more discriminative information in the learning of transferrable *** experiments show that our method can improve the discriminability while maintaining transferability and exceeds the most advanced methods in the domain adaptation benchmark datasets.
The purpose of unsupervised domain adaptation is to use the knowledge of the source domain whose data distribution is different from that of the target domain for promoting the learning task in the target *** key bott...
详细信息
The purpose of unsupervised domain adaptation is to use the knowledge of the source domain whose data distribution is different from that of the target domain for promoting the learning task in the target *** key bottleneck in unsupervised domain adaptation is how to obtain higher-level and more abstract feature representations between source and target domains which can bridge the chasm of domain ***,deep learning methods based on autoencoder have achieved sound performance in representation learning,and many dual or serial autoencoderbased methods take different characteristics of data into consideration for improving the effectiveness of unsupervised domain ***,most existing methods of autoencoders just serially connect the features generated by different autoencoders,which pose challenges for the discriminative representation learning and fail to find the real cross-domain *** address this problem,we propose a novel representation learning method based on an integrated autoencoders for unsupervised domain adaptation,called *** capture the inter-and inner-domain features of the raw data,two different autoencoders,which are the marginalized autoencoder with maximum mean discrepancy(mAE)and convolutional autoencoder(CAE)respectively,are proposed to learn different feature *** higher-level features are obtained by these two different autoencoders,a sparse autoencoder is introduced to compact these inter-and inner-domain *** addition,a whitening layer is embedded for features processed before the mAE to reduce redundant features inside a local *** results demonstrate the effectiveness of our proposed method compared with several state-of-the-art baseline methods.
暂无评论