咨询与建议

限定检索结果

文献类型

  • 63 篇 期刊文献
  • 41 篇 会议

馆藏范围

  • 104 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 78 篇 工学
    • 51 篇 计算机科学与技术...
    • 44 篇 软件工程
    • 20 篇 生物工程
    • 13 篇 信息与通信工程
    • 11 篇 机械工程
    • 9 篇 光学工程
    • 6 篇 控制科学与工程
    • 5 篇 化学工程与技术
    • 4 篇 电气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 安全科学与工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 交通运输工程
    • 1 篇 力学(可授工学、理...
  • 53 篇 理学
    • 20 篇 生物学
    • 19 篇 数学
    • 13 篇 物理学
    • 8 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 化学
    • 1 篇 地质学
  • 26 篇 管理学
    • 14 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 3 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 公共卫生与预防医...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 8 篇 face recognition
  • 6 篇 semantics
  • 5 篇 deep neural netw...
  • 5 篇 image segmentati...
  • 4 篇 pattern recognit...
  • 4 篇 image classifica...
  • 3 篇 deep learning
  • 3 篇 convolution
  • 3 篇 computer vision
  • 3 篇 training
  • 3 篇 intelligent syst...
  • 2 篇 object detection
  • 2 篇 automation
  • 2 篇 neural networks
  • 2 篇 cameras
  • 2 篇 predictive model...
  • 2 篇 decoding
  • 2 篇 birds
  • 2 篇 pixels
  • 2 篇 image processing

机构

  • 20 篇 pattern recognit...
  • 16 篇 the pattern reco...
  • 9 篇 school of comput...
  • 8 篇 guizhou key labo...
  • 8 篇 pattern recognit...
  • 6 篇 pattern recognit...
  • 6 篇 school of comput...
  • 5 篇 department of st...
  • 4 篇 department of st...
  • 3 篇 pattern recognit...
  • 3 篇 national lab of ...
  • 3 篇 school of comput...
  • 2 篇 department of el...
  • 2 篇 school of comput...
  • 2 篇 state key labora...
  • 2 篇 shandong senter ...
  • 2 篇 oppo research se...
  • 2 篇 the school of co...
  • 2 篇 liupanshui norma...
  • 2 篇 faculty of actua...

作者

  • 27 篇 ma zhanyu
  • 18 篇 deng weihong
  • 17 篇 guo jun
  • 11 篇 chang dongliang
  • 10 篇 song yi-zhe
  • 9 篇 li xiaoxu
  • 9 篇 du ruoyi
  • 8 篇 liang yihui
  • 8 篇 wang mei
  • 8 篇 xue jing-hao
  • 7 篇 feng fujian
  • 5 篇 zhanyu ma
  • 4 篇 li wenjie
  • 4 篇 yang yang
  • 4 篇 gao guangwei
  • 4 篇 liang kongming
  • 4 篇 cao jie
  • 3 篇 xu xiang
  • 3 篇 xie jiyang
  • 3 篇 li juncheng

语言

  • 99 篇 英文
  • 4 篇 其他
  • 3 篇 中文
检索条件"机构=School of Pattern Recognition and Intelligent System"
104 条 记 录,以下是51-60 订阅
排序:
Tracking system for driving assistance with the faster R-CNN  2nd
Tracking system for driving assistance with the faster R-CNN
收藏 引用
2nd International Conference on Computer, Communication and Computational Sciences, IC4S 2017
作者: Yang, Kai Zhang, Chuang Wu, Ming Pattern Recognition and Intelligent System Lab School of Information and Communication Engineering Beijing University of Posts and Telecommunications Beijing China
The vehicle detection and tracking in driving assistance system are ordinarily achieved by the optical or radar technology. In this work, we explore video processing for driving assistance system. An object’s detecti... 详细信息
来源: 评论
Towards transferable adversarial attack against deep face recognition
arXiv
收藏 引用
arXiv 2020年
作者: Zhong, Yaoyao Deng, Weihong Pattern Recognition and Intelligent System Laboratory School of Information and Communication Engineering Beijing University of Posts and Telecommunications Beijing100876 China
—Face recognition has achieved great success in the last five years due to the development of deep learning methods. However, deep convolutional neural networks (DCNNs) have been found to be vulnerable to adversarial... 详细信息
来源: 评论
PropagationNet: propagate points to curve to learn structure information
arXiv
收藏 引用
arXiv 2020年
作者: Huang, Xiehe Deng, Weihong Shen, Haifeng Zhang, Xiubao Ye, Jieping Pattern Recognition & Intelligent System Laboratory School of Information and Communication Engineering Beijing University of Posts and Telecommunications AI Labs DiDi Chuxing
Deep learning technique has dramatically boosted the performance of face alignment algorithms. However, due to large variability and lack of samples, the alignment problem in unconstrained situations, e.g. large head ... 详细信息
来源: 评论
Deep Metric Learning for Few-Shot Image Classification: A Review of Recent Developments
arXiv
收藏 引用
arXiv 2021年
作者: Li, Xiaoxu Yang, Xiaochen Ma, Zhanyu Xue, Jing-Hao School of Computer and Communication Lanzhou University of Technology China Pattern Recognition and Intelligent System Laboratory School of Information and Communication Engineering Beijing University of Posts and Telecommunications China School of Mathematics and Statistics University of Glasgow United Kingdom Department of Statistical Science University College London United Kingdom
Few-shot image classification is a challenging problem that aims to achieve the human level of recognition based only on a small number of training images. One main solution to few-shot image classification is deep me... 详细信息
来源: 评论
PropagationNet: Propagate Points to Curve to Learn Structure Information
PropagationNet: Propagate Points to Curve to Learn Structure...
收藏 引用
Conference on Computer Vision and pattern recognition (CVPR)
作者: Xiehe Huang Weihong Deng Haifeng Shen Xiubao Zhang Jieping Ye Pattern Recognition & Intelligent System Laboratory School of Information and Communication Engineering Beijing University of Posts and Telecommunications AI Labs DiDi Chuxing
Deep learning technique has dramatically boosted the performance of face alignment algorithms. However, due to large variability and lack of samples, the alignment problem in unconstrained situations, e.g. large head ... 详细信息
来源: 评论
GPCA: A probabilistic framework for Gaussian process embedded channel attention
arXiv
收藏 引用
arXiv 2020年
作者: Xie, Jiyang Ma, Zhanyu Chang, Dongliang Zhang, Guoqiang Guo, Jun Pattern Recognition and Intelligent System Lab. School of Artificial Intelligence Beijing University of Posts and Telecommunications China School of Electrical and Data Engineering University of Technology Sydney Australia
Channel attention mechanisms have been commonly applied in many visual tasks for effective performance improvement. It is able to reinforce the informative channels as well as to suppress the useless channels. Recentl... 详细信息
来源: 评论
Your "Flamingo" is My "Bird": Fine-grained, or not
arXiv
收藏 引用
arXiv 2020年
作者: Chang, Dongliang Pang, Kaiyue Zheng, Yixiao Ma, Zhanyu Song, Yi-Zhe Guo, Jun The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China SketchX CVSSP University of Surrey London United Kingdom
Whether what you see in Figure 1 is a "flamingo" or a "bird", is the question we ask in this paper. While fine-grained visual classification (FGVC) strives to arrive at the former, for the majority... 详细信息
来源: 评论
Symmetry-Enhanced Attention Network for Acute Ischemic Infarct Segmentation with Non–Contrast CT Images
arXiv
收藏 引用
arXiv 2021年
作者: Liang, Kongming Han, Kai Li, Xiuli Cheng, Xiaoqing Li, Yiming Wang, Yizhou Yu, Yizhou Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China Deepwise AI Lab Beijing China Department of Medical Imaging Jinling Hospital Nanjing University School of Medicine Jiangsu Nanjing China Department of Computer Science and Technology Peking University Beijing China The University of Hong Kong Pokfulam Hong Kong
Quantitative estimation of the acute ischemic infarct is crucial to improve neurological outcomes of the patients with stroke symptoms. Since the density of lesions is subtle and can be confounded by normal physiologi... 详细信息
来源: 评论
Mind the gap: Enlarging the domain gap in open set domain adaptation
arXiv
收藏 引用
arXiv 2020年
作者: Chang, Dongliang Sain, Aneeshan Ma, Zhanyu Song, Yi-Zhe Guo, Jun Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China Centre for Vision Speech and Signal Processing University of Surrey London United Kingdom
Unsupervised domain adaptation aims to leverage labeled data from a source domain to learn a classifier for an unlabeled target domain. Among its many variants, open set domain adaptation (OSDA) is perhaps the most ch... 详细信息
来源: 评论
A concise review of recent few-shot meta-learning methods
arXiv
收藏 引用
arXiv 2020年
作者: Li, Xiaoxu Sun, Zhuo Xue, Jing-Hao Ma, Zhanyu School of Computer and Communication Lanzhou University of Technology China Department of Statistical Science University College London United Kingdom Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications China
Few-shot meta-learning has been recently reviving with expectations to mimic humanity's fast adaption to new concepts based on prior knowledge. In this short communication, we give a concise review on recent repre... 详细信息
来源: 评论