咨询与建议

限定检索结果

文献类型

  • 63 篇 期刊文献
  • 41 篇 会议

馆藏范围

  • 104 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 78 篇 工学
    • 51 篇 计算机科学与技术...
    • 44 篇 软件工程
    • 20 篇 生物工程
    • 13 篇 信息与通信工程
    • 11 篇 机械工程
    • 9 篇 光学工程
    • 6 篇 控制科学与工程
    • 5 篇 化学工程与技术
    • 4 篇 电气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 安全科学与工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 交通运输工程
    • 1 篇 力学(可授工学、理...
  • 53 篇 理学
    • 20 篇 生物学
    • 19 篇 数学
    • 13 篇 物理学
    • 8 篇 系统科学
    • 8 篇 统计学(可授理学、...
    • 4 篇 化学
    • 1 篇 地质学
  • 26 篇 管理学
    • 14 篇 图书情报与档案管...
    • 12 篇 管理科学与工程(可...
    • 5 篇 工商管理
  • 3 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 公共卫生与预防医...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 艺术学

主题

  • 8 篇 face recognition
  • 6 篇 semantics
  • 5 篇 deep neural netw...
  • 5 篇 image segmentati...
  • 4 篇 pattern recognit...
  • 4 篇 image classifica...
  • 3 篇 deep learning
  • 3 篇 convolution
  • 3 篇 computer vision
  • 3 篇 training
  • 3 篇 intelligent syst...
  • 2 篇 object detection
  • 2 篇 automation
  • 2 篇 neural networks
  • 2 篇 cameras
  • 2 篇 predictive model...
  • 2 篇 decoding
  • 2 篇 birds
  • 2 篇 pixels
  • 2 篇 image processing

机构

  • 20 篇 pattern recognit...
  • 16 篇 the pattern reco...
  • 9 篇 school of comput...
  • 8 篇 guizhou key labo...
  • 8 篇 pattern recognit...
  • 6 篇 pattern recognit...
  • 6 篇 school of comput...
  • 5 篇 department of st...
  • 4 篇 department of st...
  • 3 篇 pattern recognit...
  • 3 篇 national lab of ...
  • 3 篇 school of comput...
  • 2 篇 department of el...
  • 2 篇 school of comput...
  • 2 篇 state key labora...
  • 2 篇 shandong senter ...
  • 2 篇 oppo research se...
  • 2 篇 the school of co...
  • 2 篇 liupanshui norma...
  • 2 篇 faculty of actua...

作者

  • 27 篇 ma zhanyu
  • 18 篇 deng weihong
  • 17 篇 guo jun
  • 11 篇 chang dongliang
  • 10 篇 song yi-zhe
  • 9 篇 li xiaoxu
  • 9 篇 du ruoyi
  • 8 篇 liang yihui
  • 8 篇 wang mei
  • 8 篇 xue jing-hao
  • 7 篇 feng fujian
  • 5 篇 zhanyu ma
  • 4 篇 li wenjie
  • 4 篇 yang yang
  • 4 篇 gao guangwei
  • 4 篇 liang kongming
  • 4 篇 cao jie
  • 3 篇 xu xiang
  • 3 篇 xie jiyang
  • 3 篇 li juncheng

语言

  • 99 篇 英文
  • 4 篇 其他
  • 3 篇 中文
检索条件"机构=School of Pattern Recognition and Intelligent System"
104 条 记 录,以下是61-70 订阅
排序:
Efficient Image Super-Resolution with Feature Interaction Weighted Hybrid Network
arXiv
收藏 引用
arXiv 2022年
作者: Li, Wenjie Li, Juncheng Gao, Guangwei Deng, Weihong Yang, Jian Qi, Guo-Jun Lin, Chia-Wen Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100080 China Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China Key Laboratory of Artificial Intelligence Ministry of Education Shanghai200240 China Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China School of Communication and Information Engineering Shanghai University Shanghai200444 China School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China Research Center for Industries of the Future the School of Engineering Westlake University Hangzhou310024 China OPPO Research SeattleWA98101 United States Department of Electrical Engineering National Tsing Hua University Hsinchu30013 Taiwan
Lightweight image super-resolution aims to reconstruct high-resolution images from low-resolution images using low computational costs. However, existing methods result in the loss of middle-layer features due to acti... 详细信息
来源: 评论
Clarity in chaos: Boosting few-shot classification through information suppression and sparsification
收藏 引用
pattern recognition 2025年 167卷
作者: Li, Xiaoxu Ji, Luchen Zhu, Rui Ma, Zhanyu Xue, Jing-Hao School of Computer and Communication Lanzhou University of Technology Lanzhou730050 China Faculty of Actuarial Science and Insurance Bayes Business School City St George's University of London LondonEC1Y 8TZ United Kingdom Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China Department of Statistical Science University College London LondonWC1E 6BT United Kingdom
The advance of deep learning has invigorated the research of few-shot classification. However, the interference of non-target information in feature representations hampers classification generalization. To tackle thi... 详细信息
来源: 评论
The devil is in the channels: Mutual-channel loss for fine-grained image classification
arXiv
收藏 引用
arXiv 2020年
作者: Chang, Dongliang Ding, Yifeng Xie, Jiyang Bhunia, Ayan Kumar Li, Xiaoxu Ma, Zhanyu Wu, Ming Guo, Jun Song, Yi-Zhe Pattern Recognition and Intelligent System Laboratory School of Information and Communication Engineering Beijing University of Posts and Telecommunications Beijing100876 China School of Computer and Communication Lanzhou University of Technology Lanzhou730050 China Centre for Vision Speech and Signal Processing University of Surrey London United Kingdom
The key to solving fine-grained image categorization is finding discriminate and local regions that correspond to subtle visual traits. Great strides have been made, with complex networks designed specifically to lear... 详细信息
来源: 评论
A deeper look at facial expression dataset bias
arXiv
收藏 引用
arXiv 2019年
作者: Li, Shan Deng, Weihong Pattern Recognition and Intelligent System Laboratory School of Information and Communication Engineering Beijing University of Posts and Telecommunications Beijing100876 China
Datasets play an important role in the progress of facial expression recognition algorithms, but they may suffer from obvious biases caused by different cultures and collection conditions. To look deeper into this bia... 详细信息
来源: 评论
Cross-receptive Focused Inference Network for Lightweight Image Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Li, Wenjie Li, Juncheng Gao, Guangwei Deng, Weihong Zhou, Jiantao Yang, Jian Qi, Guo-Jun The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China The Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China The School of Communication and Information Engineering Shanghai University Shanghai200444 China Jiangsu Key Laboratory of Image and Video Understanding for Social Safety Nanjing University of Science and Technology Nanjing210094 China The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China The State Key Laboratory of Internet of Things for Smart City Department of Computer and Information Science Faculty of Science and Technology University of Macau 999078 China The School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China The Research Center for Industries of the Future The School of Engineering Westlake University Hangzhou310024 China OPPO Research SeattleWA98101 United States
Recently, Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks due to the ability of global feature extraction. However, the capabilities of Transformers that need ... 详细信息
来源: 评论
Oslnet: Deep small-sample classification with an orthogonal softmax layer
arXiv
收藏 引用
arXiv 2020年
作者: Li, Xiaoxu Chang, Dongliang Ma, Zhanyu Tan, Zheng-Hua Xue, Jing-Hao Cao, Jie Yu, Jingyi Guo, Jun School of Computer and Communication Lanzhou University of Technology China Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China Department of Electronic Systems Aalborg University Denmark Department of Statistical Science University College London United Kingdom School of Information Science and Technology ShanghaiTech University China
A deep neural network of multiple nonlinear layers forms a large function space, which can easily lead to overfitting when it encounters small-sample data. To mitigate overfitting in small-sample classification, learn... 详细信息
来源: 评论
BSNet: Bi-similarity network for few-shot fine-grained image classification
arXiv
收藏 引用
arXiv 2020年
作者: Li, Xiaoxu Wu, Jijie Sun, Zhuo Ma, Zhanyu Cao, Jie Xue, Jing-Hao School of Computer and Communication Lanzhou University of Technology Lanzhou730050 China Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China Department of Statistical Science University College London LondonWC1E 6BT United Kingdom
Few-shot learning for fine-grained image classification has gained recent attention in computer vision. Among the approaches for few-shot learning, due to the simplicity and effectiveness, metric-based methods are fav... 详细信息
来源: 评论
ReMarNet: Conjoint relation and margin learning for small-sample image classification
arXiv
收藏 引用
arXiv 2020年
作者: Li, Xiaoxu Yu, Liyun Yang, Xiaochen Ma, Zhanyu Jing-Hao, Xue Cao, Jie Guo, Jun School of Computer and Communication Lanzhou University of Technology Lanzhou730050 China Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China Department of Statistical Science University College London LondonWC1E 6BT United Kingdom
Despite achieving state-of-the-art performance, deep learning methods generally require a large amount of labeled data during training and may suffer from overfitting when the sample size is small. To ensure good gene... 详细信息
来源: 评论
Efficient Algorithms for E-Healthcare to Solve Multiobject Fuse Detection Problem
收藏 引用
Journal of Healthcare Engineering 2021年 2021卷
作者: Ahmad, Ijaz Ullah, Inam Khan, Wali Ullah Ur Rehman, Ateeq Adrees, Mohmmed S. Saleem, Muhammad Qaiser Cheikhrouhou, Omar Hamam, Habib Shafiq, Muhammad School of Pattern Recognition and Intelligent System Shenzhen Institute of Advance Technology Chinese Academy of Science Shenzhen China Changzhou Campus Changzhou213022 China School of Information Science and Engineering Shandong University Qingdao266071 China Department of Electrical Engineering Government College University Lahore54000 Pakistan College of Computer Science and Information Technology Al Baha University Al Baha Saudi Arabia College of CIT Taif University P.O. Box 11099 Taif21944 Saudi Arabia Faculty of Engineering Université de Moncton MonctonNBE1A3E9 Canada Sfax Tunisia Department of Information and Communication Engineering Yeungnam University Gyeongsan38541 Korea Republic of
Object detection plays a vital role in the fields of computer vision, machine learning, and artificial intelligence applications (such as FUSE-AI (E-healthcare MRI scan), face detection, people counting, and vehicle d... 详细信息
来源: 评论
Point adversarial self mining: A simple method for facial expression recognition
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ping Lin, Yuewei Meng, Zibo Lu, Lu Deng, Weihong Zhou, Joey Tianyi Yang, Yi Institute of High Performance Computing Agency for Science Technology and Research Singapore Singapore Centre for Artificial Intelligence University of Technology Sydney Sydney Australia Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China Brookhaven National Laboratory UptonNY United States InnoPeak Technology Inc. Palo AltoCA United States Key Laboratory of Medical Molecular Virology School of Basic Medical Sciences Fudan University Shanghai China
In this paper, we propose a simple yet effective approach, named Point Adversarial Self Mining (PASM), to improve the recognition accuracy in facial expression recognition. Unlike previous works focusing on designing ... 详细信息
来源: 评论