咨询与建议

限定检索结果

文献类型

  • 66 篇 会议
  • 35 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 104 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 62 篇 工学
    • 53 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 22 篇 信息与通信工程
    • 10 篇 电气工程
    • 9 篇 控制科学与工程
    • 8 篇 生物工程
    • 7 篇 电子科学与技术(可...
    • 4 篇 光学工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 冶金工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 仪器科学与技术
    • 2 篇 化学工程与技术
    • 2 篇 轻工技术与工程
    • 2 篇 生物医学工程(可授...
    • 2 篇 网络空间安全
  • 25 篇 理学
    • 15 篇 数学
    • 8 篇 生物学
    • 4 篇 物理学
    • 4 篇 统计学(可授理学、...
    • 2 篇 化学
    • 1 篇 地球物理学
  • 19 篇 管理学
    • 13 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 4 篇 医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 3 篇 公共卫生与预防医...
  • 3 篇 教育学
    • 3 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 18 篇 software enginee...
  • 15 篇 data communicati...
  • 11 篇 data mining
  • 7 篇 australia
  • 6 篇 web mining
  • 5 篇 association rule...
  • 5 篇 information retr...
  • 4 篇 access control
  • 4 篇 xml
  • 4 篇 frequency
  • 4 篇 databases
  • 4 篇 artificial intel...
  • 3 篇 deep learning
  • 3 篇 systems engineer...
  • 3 篇 ontologies
  • 3 篇 communication sy...
  • 3 篇 image denoising
  • 3 篇 control systems
  • 3 篇 humans
  • 3 篇 hardware

机构

  • 11 篇 school of softwa...
  • 9 篇 school of softwa...
  • 8 篇 school of softwa...
  • 8 篇 school of softwa...
  • 7 篇 school of softwa...
  • 4 篇 school of softwa...
  • 3 篇 school of comput...
  • 3 篇 school of softwa...
  • 3 篇 school of inform...
  • 3 篇 the national eng...
  • 3 篇 department of sy...
  • 3 篇 peng cheng labor...
  • 3 篇 school of softwa...
  • 3 篇 the school of so...
  • 3 篇 school of comput...
  • 2 篇 college of compu...
  • 2 篇 school of artifi...
  • 2 篇 department of el...
  • 2 篇 the school of co...
  • 2 篇 information secu...

作者

  • 9 篇 yuefeng li
  • 8 篇 lin chia-wen
  • 8 篇 li yuefeng
  • 7 篇 tian chunwei
  • 6 篇 yue xu
  • 5 篇 xu yue
  • 5 篇 j. sitte
  • 5 篇 zuo wangmeng
  • 4 篇 zheng menghua
  • 4 篇 geva shlomo
  • 4 篇 jøsang audun
  • 4 篇 zhang yanning
  • 3 篇 zhong ning
  • 3 篇 sheng-tang wu
  • 3 篇 zhang shichao
  • 3 篇 joaquin sitte
  • 3 篇 n. zhong
  • 3 篇 nayak richi
  • 3 篇 p. winzer
  • 3 篇 fidge colin

语言

  • 102 篇 英文
  • 2 篇 其他
检索条件"机构=School of Software Engineering and Data Communications"
104 条 记 录,以下是91-100 订阅
排序:
A cross Transformer for image denoising
收藏 引用
Information Fusion 2024年 102卷
作者: Tian, Chunwei Zheng, Menghua Zuo, Wangmeng Zhang, Shichao Zhang, Yanning Lin, Chia-Wen School of Software Northwestern Polytechnical University Xi'anShaanxi710129 China National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Xi'anShaanxi710129 China School of Computer Science and Technology Harbin Institute of Technology Heilongjiang Harbin150001 China Peng Cheng Laboratory Guangdong Shenzhen518055 China School of Computer Science and Engineering Central South University Hunan Changsha410083 China School of Computer Science Northwestern Polytechnical University Shaanxi Xi'an710129 China Department of Electrical Engineering and the Institute of Communications Engineering National Tsing Hua University Hsinchu30013 Taiwan
Deep convolutional neural networks (CNNs) depend on feedforward and feedback ways to obtain good performance in image denoising. However, how to obtain effective structural information via CNNs to efficiently represen... 详细信息
来源: 评论
An overview of domain-specific foundation model: key technologies, applications and challenges
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Haolong Chen, Hanzhi Zhao, Zijian Han, Kaifeng Zhu, Guangxu Zhao, Yichen Du, Ying Xu, Wei Shi, Qingjiang Shenzhen Research Institute of Big Data Shenzhen518172 China School of Science and Engineering The Chinese University of Hong Kong Shenzhen518172 China China Academy of Information and Communications Technology Beijing100191 China China Mobile Group Device Co. Ltd. Beijing100033 China School of Computer Science and Engineering Sun Yat-sen University Guangzhou510275 China National Mobile Communications Research Laboratory Southeast University Nanjing210096 China Purple Mountain Laboratories Nanjing211111 China School of Software Engineering Tongji University Shanghai201804 China
The impressive performance of ChatGPT and other foundation-model-based products in human language understanding has prompted both academia and industry to explore how these models can be tailored for specific industri... 详细信息
来源: 评论
A systematic collection of medical image datasets for deep learning
arXiv
收藏 引用
arXiv 2021年
作者: Li, Johann Zhu, Guangming Hua, Cong Feng, Mingtao Bennamoun, Basheer Li, Ping Lu, Xiaoyuan Song, Juan Shen, Peiyi Xu, Xu Mei, Lin Zhang, Liang Shah, Syed Afaq Ali Bennamoun, Mohammed School of Computer Science and Technology Xidian University China School of Medicine University of Notre Dame Australia Data and Virtual Research Room Shanghai Broadband Network Center China Third Research Institute of The Ministry of Public Security China Discipline of Information Technology Media and Communications Murdoch University Australia Department of Computer Science and Software Engineering University of Western Australia Australia
The astounding success made by artificial intelligence (AI) in healthcare and other fields proves that AI can achieve human-like performance. However, success always comes with challenges. Deep learning algorithms are... 详细信息
来源: 评论
A self-supervised CNN for image watermark removal
arXiv
收藏 引用
arXiv 2024年
作者: Tian, Chunwei Zheng, Menghua Jiao, Tiancai Zuo, Wangmeng Zhang, Yanning Lin, Chia-Wen the School of Software Northwestern Polytechnical University Shaanxi Xi’an710129 China the National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Xi’an710129 China the School of Computer Science and Technology Harbin Institute of Technology Heilongjiang Harbin150001 China the Peng Cheng Laboratory Laboratory Guangdong Shenzhen518055 China the School of Computer Science Northwestern Polytechnical University the National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Xi’an710129 China the Department of Electrical Engineering the Institute of Communications Engineering National Tsing Hua University Hsinchu300 Taiwan
Popular convolutional neural networks mainly use paired images in a supervised way for image watermark removal. However, watermarked images do not have reference images in the real world, which results in poor robustn... 详细信息
来源: 评论
EDITORIAL
收藏 引用
INTERNATIONAL JOURNAL OF RELIABILITY QUALITY & SAFETY engineering 2005年 第6期12卷 V-vi页
作者: Hoang Pham Relex Software Corporation United States IEEE ACM ASA ASQ SRE Portugal SOLE IUT (Institut Universitaire de Technologie) de Nantes France IRCCyN (Institut de Recherche en Communications et Cybernétique de Nantes) France UMR CNRS 6597 France School of Industrial and Systems Engineering Georgia Institute of Technology United States INFORMS Section in Data Mining (DM) Department of Mechanical Engineering University of Alberta Canada IIE
No abstract available
来源: 评论
A heterogeneous group CNN for image super-resolution
arXiv
收藏 引用
arXiv 2022年
作者: Tian, Chunwei Zhang, Yanning Zuo, Wangmeng Lin, Chia-Wen Zhang, David Yuan, Yixuan The School of Software Northwestern Polytechnical University Shaanxi Xi’an710129 China The National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Xi’an710129 China The School of Computer Science Northwestern Polytechnical University The National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Xi’an710129 China The School of Computer Science and Technology Harbin Institute of Technology Heilongjiang Harbin150001 China The Department of Electrical Engineering The Institute of Communications Engineering National Tsing Hua University Hsinchu Taiwan Guangdong Shenzhen518172 China The Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China The Department of Electronic Engineering The Chinese University of Hong Kong Hong Kong
Convolutional neural networks (CNNs) have obtained remarkable performance via deep architectures. However, these CNNs often achieve poor robustness for image superresolution (SR) under complex scenes. In this paper, w... 详细信息
来源: 评论
A cross Transformer for image denoising
arXiv
收藏 引用
arXiv 2023年
作者: Tian, Chunwei Zheng, Menghua Zuo, Wangmeng Zhang, Shichao Zhang, Yanning Lin, Chia-Wen School of Software Northwestern Polytechnical University Shaanxi Xi’an710129 China National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Xi’an710129 China School of Computer Science and Technology Harbin Institute of Technology Heilongjiang Harbin150001 China Peng Cheng Laboratory Shenzhen518055 China School of Computer Science and Engineering Central South University Hunan Changsha410083 China School of Computer Science Northwestern Polytechnical University Shaanxi Xi’an710129 China Department of Electrical Engineering The Institute of Communications Engineering National Tsing Hua University Hsinchu30013 Taiwan
Deep convolutional neural networks (CNNs) depend on feedforward and feedback ways to obtain good performance in image denoising. However, how to obtain effective structural information via CNNs to efficiently represen... 详细信息
来源: 评论
Progress in Robotics  1
收藏 引用
丛书名: communications in Computer and Information Science
1000年
作者: Jong-Hwan Kim Shuzhi Sam Ge Prahlad Vadakkepat Abdullah Al Manum Ryohei Nakatsu Norbert Jesse Sadasivan Puthusserypady K Ulrich Rückert Joaquin Sitte Ulf Witkowski Thomas Braunl Jacky Baltes John Anderson Ching-Chang Wong Igor Verner David Ahlgren
th This volume is an edition of the papers selected from the 12 FIRA RoboWorld C- gress, held in Incheon, Korea, August 16–18, 2009. The Federation of International Robosoccer Association (FIRA – www. fira. net) is ... 详细信息
来源: 评论
Adaptive Convolutional Neural Network for Image Super-resolution
arXiv
收藏 引用
arXiv 2024年
作者: Tian, Chunwei Zhang, Xuanyu Wang, Tao Zhang, Yongjun Zhu, Qi Lin, Chia-Wen The School of Software Northwestern Polytechnical University Xi’an710129 China The National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Xi’an710129 China The Yangtze River Delta Research Institute Northwestern Polytechnical University Taicang215400 China The School of Computer Science Northwestern Polytechnical University Xi’an710129 China The College of Computer Science and Technology Guizhou University Guiyang550025 China The School of Artificial Intelligence Nanjing University of Aeronautics and Astronautics Nanjing210016 China The Department of Electrical Engineering The Institute of Communications Engineering National Tsing Hua University Taiwan
Convolutional neural networks can automatically learn features via deep network architectures and given input samples. However, the robustness of obtained models may face challenges in varying scenes. Bigger differenc... 详细信息
来源: 评论
Image super-resolution with an enhanced group convolutional neural network
arXiv
收藏 引用
arXiv 2022年
作者: Tian, Chunwei Yuan, Yixuan Zhang, Shichao Lin, Chia-Wen Zuo, Wangmeng Zhang, David School of Software Northwestern Polytechnical University Shaanxi Xi’an710129 China National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Xi’an710129 China Department of Electrical Engineering City University of Hong Kong Hong Kong School of Computer Science and Engineering Central South University Hunan Changsha410083 China Department of Electrical Engineering the Institute of Communications Engineering National Tsing Hua University Hsinchu Taiwan School of Computer Science and Technology Harbin Institute of Technology Heilongjiang Harbin150001 China Peng Cheng Laboratory Guangdong Shenzhen518055 China Guangdong Shenzhen518172 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
CNNs with strong learning abilities are widely chosen to resolve super-resolution problem. However, CNNs depend on deeper network architectures to improve performance of image super-resolution, which may increase comp... 详细信息
来源: 评论