Brief Biography: Vishrant Tripathi obtained his PhD from the EECS department at MIT, working with Prof. Modiano at the Lab for Information and Decision Systems (LIDS). He is currently working on building efficient dat...
详细信息
Brief Biography: Vishrant Tripathi obtained his PhD from the EECS department at MIT, working with Prof. Modiano at the Lab for Information and Decision Systems (LIDS). He is currently working on building efficient data center networks at Google. His research interests primarily lie in the optimization of resources in resource constrained networked systems. The main applications of his work are in multi-agent robotics, federated learning, edge computing, cloud infrastructure, and monitoring for IoT. More recently, he has also been working on software defined networking and next-generation wireless networks. In 2022, he won the Best Paper Runner Up Award at ACM MobiHoc. Copyright is held by author/owner(s).
Vision sensors are versatile and can capture a wide range of visual cues, such as color, texture, shape, and depth. This versatility, along with the relatively inexpensive availability of machine vision cameras, playe...
详细信息
Vision sensors are versatile and can capture a wide range of visual cues, such as color, texture, shape, and depth. This versatility, along with the relatively inexpensive availability of machine vision cameras, played an important role in adopting vision-based environment perception systems in autonomous vehicles (AVs). However, vision-based perception systems can be easily affected by glare in the presence of a bright source of light, such as the sun or the headlights of the oncoming vehicle at night or simply by light reflecting off snow or ice-covered surfaces;scenarios encountered frequently during driving. In this paper, we investigate various glare reduction techniques, including the proposed saturated pixel-aware glare reduction technique for improved performance of the computer vision (CV) tasks employed by the perception layer of AVs. We evaluate these glare reduction methods based on various performance metrics of the CV algorithms used by the perception layer. Specifically, we considered object detection, object recognition, object tracking, depth estimation, and lane detection which are crucial for autonomous driving. The experimental findings validate the efficacy of the proposed glare reduction approach, showcasing enhanced performance across diverse perception tasks and remarkable resilience against varying levels of glare. IEEE
In the era of network communication,digital image encryption(DIE)technology is critical to ensure the security of image ***,there has been limited research on combining deep learning neural networks with chaotic mappi...
详细信息
In the era of network communication,digital image encryption(DIE)technology is critical to ensure the security of image ***,there has been limited research on combining deep learning neural networks with chaotic mapping for the encryption of digital ***,this paper addresses this gap by studying the generation of pseudo-random sequences(PRS)chaotic signals using dual logistic chaotic *** signals are then predicted using long and short-term memory(LSTM)networks,resulting in the reconstruction of a new chaotic *** the research process,it was discovered that there are numerous training parameters associated with the LSTM network,which can hinder training *** overcome this challenge and improve training efficiency,the paper proposes an improved particle swarm optimization(IPSO)algorithm to optimize the LSTM ***,the obtained chaotic signal from the optimized model training is further scrambled,obfuscated,and diffused to achieve the final encrypted *** research presents a digital image encryption(DIE)algorithm based on a double chaotic map(DCM)and *** algorithm demonstrates a high average NPCR(Number of Pixel Change Rate)of 99.56%and a UACI(Unified Average Changing Intensity)value of 33.46%,indicating a strong ability to resist differential ***,the proposed algorithm realizes secure and sensitive digital image encryption,ensuring the protection of personal information in the Internet environment.
This letter proposes a reliable transfer learning(RTL)method for pre-fault dynamic security assessment(DSA)in power systems to improve DSA performance in the presence of potentially related unknown *** takes individua...
详细信息
This letter proposes a reliable transfer learning(RTL)method for pre-fault dynamic security assessment(DSA)in power systems to improve DSA performance in the presence of potentially related unknown *** takes individual discrepancies into consideration and can handle unknown faults with incomplete *** experiment results demonstrate high DSA accuracy and computational efficiency of the proposed RTL *** analysis shows RTL can guarantee system performance.
Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning ***,any metapaths consistin...
详细信息
Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning ***,any metapaths consisting of multiple,simple metarelations must be driven by domain *** sensitive,expensive,and limited metapaths severely reduce the flexibility and scalability of the existing models.A metapath-free,scalable representation learning model,called Metarelation2vec,is proposed for HNs with biased joint learning of all metarelations in a bid to address this ***,a metarelation-aware,biased walk strategy is first designed to obtain better training samples by using autogenerating cooperation probabilities for all metarelations rather than using expert-given ***,grouped nodes by the type,a common and shallow skip-gram model is used to separately learn structural proximity for each node ***,grouped links by the type,a novel and shallow model is used to separately learn the semantic proximity for each link ***,supervised by the cooperation probabilities of all meta-words,the biased training samples are thrown into the shallow models to jointly learn the structural and semantic information in the HNs,ensuring the accuracy and scalability of the *** experimental results on three tasks and four open datasets demonstrate the advantages of our proposed model.
Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems (IDS). Data labeling difficulties, incorrect conclusions, and vulnerability to malicious data i...
详细信息
Multiagent Reinforcement Learning (MARL) plays a pivotal role in intelligent vehicle systems, offering solutions for complex decision-making, coordination, and adaptive behavior among autonomous agents. This review ai...
详细信息
Multiagent Reinforcement Learning (MARL) plays a pivotal role in intelligent vehicle systems, offering solutions for complex decision-making, coordination, and adaptive behavior among autonomous agents. This review aims to highlight the importance of fostering trust in MARL and emphasize the significance of MARL in revolutionizing intelligent vehicle systems. First, this paper summarizes the fundamental methods of MARL. Second, it identifies the limitations of MARL in safety, robustness, generalization, and ethical constraints and outlines the corresponding research methods. Then we summarize their applications in intelligent vehicle systems. Considering human interaction is essential to practical applications of MARL in various domains, the paper also analyzes the challenges associated with MARL's applications in human-machine systems. These challenges, when overcome, could significantly enhance the real-world implementation of MARL-based intelligent vehicle systems. IEEE
AC optimal power flow (AC OPF) is a fundamental problem in power system operations. Accurately modeling the network physics via the AC power flow equations makes AC OPF a challenging nonconvex problem. To search for g...
详细信息
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various *** methodologies have emerged as pivotal components...
详细信息
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various *** methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing *** enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target *** defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed *** response to this challenge,a novel UNet Residual Attention Network(URA-Net)is *** paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump *** essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual *** intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze *** validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image *** the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 *** noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yieldi
The Nong Han Chaloem Phrakiat Lotus Park is a tourist attraction and a source of learning regarding lotus ***,as a training area,it lacks appeal and learning motivation due to its conventional presentation of informat...
详细信息
The Nong Han Chaloem Phrakiat Lotus Park is a tourist attraction and a source of learning regarding lotus ***,as a training area,it lacks appeal and learning motivation due to its conventional presentation of information regarding lotus *** current study introduced the concept of smart learning in this setting to increase interest and motivation for *** neural networks(CNNs)were used for the classification of lotus plant species,for use in the development of a mobile application to display details about each *** scope of the study was to classify 11 species of lotus plants using the proposed CNN model based on different techniques(augmentation,dropout,and L2)and hyper parameters(dropout and epoch number).The expected outcome was to obtain a high-performance CNN model with reduced total parameters compared to using three different pre-trained CNN models(Inception V3,VGG16,and VGG19)as *** performance of the model was presented in terms of accuracy,F1-score,precision,and recall *** results showed that the CNN model with the augmentation,dropout,and L2 techniques at a dropout value of 0.4 and an epoch number of 30 provided the highest testing accuracy of *** best proposed model was more accurate than the pre-trained CNN models,especially compared to Inception *** addition,the number of total parameters was reduced by approximately 1.80–2.19 *** findings demonstrated that the proposed model with a small number of total parameters had a satisfactory degree of classification accuracy.
暂无评论