This study investigates the application of deep learning,ensemble learning,metaheuristic optimization,and image processing techniques for detecting lung and colon cancers,aiming to enhance treatment efficacy and impro...
详细信息
This study investigates the application of deep learning,ensemble learning,metaheuristic optimization,and image processing techniques for detecting lung and colon cancers,aiming to enhance treatment efficacy and improve survival *** introduce a metaheuristic-driven two-stage ensemble deep learning model for efficient lung/colon cancer *** diagnosis of lung and colon cancers is attempted using several unique indicators by different versions of deep Convolutional Neural Networks(CNNs)in feature extraction and model constructions,and utilizing the power of various Machine Learning(ML)algorithms for final ***,we consider different scenarios consisting of two-class colon cancer,three-class lung cancer,and fiveclass combined lung/colon cancer to conduct feature extraction using four *** extracted features are then integrated to create a comprehensive feature *** the next step,the optimization of the feature selection is conducted using a metaheuristic algorithm based on the Electric Eel Foraging Optimization(EEFO).This optimized feature subset is subsequently employed in various ML algorithms to determine the most effective ones through a rigorous evaluation *** top-performing algorithms are refined using the High-Performance Filter(HPF)and integrated into an ensemble learning framework employing weighted *** findings indicate that the proposed ensemble learning model significantly surpasses existing methods in classification accuracy across all datasets,achieving accuracies of 99.85%for the two-class,98.70%for the three-class,and 98.96%for the five-class datasets.
Classification and regression algorithms based on k-nearest neighbors (kNN) are often ranked among the top-10 Machine learning algorithms, due to their performance, flexibility, interpretability, non-parametric nature...
详细信息
Classification and regression algorithms based on k-nearest neighbors (kNN) are often ranked among the top-10 Machine learning algorithms, due to their performance, flexibility, interpretability, non-parametric nature, and computational efficiency. Nevertheless, in existing kNN algorithms, the kNN radius, which plays a major role in the quality of kNN estimates, is independent of any weights associated with the training samples in a kNN-neighborhood. This omission, besides limiting the performance and flexibility of kNN, causes difficulties in correcting for covariate shift (e.g., selection bias) in the training data, taking advantage of unlabeled data, domain adaptation and transfer learning. We propose a new weighted kNN algorithm that, given training samples, each associated with two weights, called consensus and relevance (which may depend on the query on hand as well), and a request for an estimate of the posterior at a query, works as follows. First, it determines the kNN neighborhood as the training samples within the kth relevance-weighted order statistic of the distances of the training samples from the query. Second, it uses the training samples in this neighborhood to produce the desired estimate of the posterior (output label or value) via consensus-weighted aggregation as in existing kNN rules. Furthermore, we show that kNN algorithms are affected by covariate shift, and that the commonly used sample reweighing technique does not correct covariate shift in existing kNN algorithms. We then show how to mitigate covariate shift in kNN decision rules by using instead our proposed consensus-relevance kNN algorithm with relevance weights determined by the amount of covariate shift (e.g., the ratio of sample probability densities before and after the shift). Finally, we provide experimental results, using 197 real datasets, demonstrating that the proposed approach is slightly better (in terms of F-1 score) on average than competing benchmark approaches for mit
Millimeter-wave network deployment is an essential and ongoing problem due to the limited coverage and expensive network infrastructure. In this work, we solve a joint network deployment and resource allocation optimi...
详细信息
Millimeter-wave network deployment is an essential and ongoing problem due to the limited coverage and expensive network infrastructure. In this work, we solve a joint network deployment and resource allocation optimization problem for a mmWave cell-free massive MIMO network considering indoor environments. The objective is to minimize the number of deployed access points (APs) for a given environment, bandwidth, AP cooperation, and precoding scheme while guaranteeing the rate requirements of the user equipments (UEs). Considering coherent joint transmission (C-JT) and non-coherent joint transmission (NC-JT), we solve the problem of AP placement, UE-AP association, and power allocation among the UEs and resource blocks jointly. For numerical analysis, we model a mid-sized airplane cabin in ray-tracing as an exemplary case for IDS. Results demonstrate that a minimum data rate of 1 Gbps can be guaranteed with less than 10 APs with C-JT. From a holistic network design perspective, we analyze the trade-off between the required fronthaul capacity and the processing capacity per AP, under different network functional split options. We observe an above 600 Gbps fronthaul rate requirement, once all network operations are centralized, which can be reduced to 200 Gbps under physical layer functional splits. 2002-2012 IEEE.
The exponential growth of scientific literature poses a significant challenge to researchers, resulting in redundancy in R&D due to inefficient review mechanisms. Manual literature reviews are time-consuming and r...
详细信息
An Internet of Mobile Things (IoMT) refers to an internetworked group of pervasive devices that coordinate their motion and task execution through frequent status and data exchange. An IoMT could be serving critical a...
详细信息
Halftone classification is a primary requisite for the perfect reconstruction of binary patterns during inverse halftone process. Majority of the halftone classification techniques are either limited to error diffused...
详细信息
This paper proposes a new cluster method combined with Dynamic Mode Decomposition with Control (DMDc), and the Proper Orthogonal Decomposition (POD) to construct more accurate reduced order models. DMDc and POD are po...
Light clients implement a simple solution for Bitcoin’s scalability problem, as they do not store the entire blockchain but only the state of particular addresses of interest. To be able to keep track of the updated ...
详细信息
In recent years, unmanned aerial vehicles (UAVs) have proven their effectiveness in surveillance due to their superior mobility. By utilizing multiple UAVs with collaborated learning, surveillance of a huge area while...
详细信息
In the field of remote sensing, the demand for improved spatial resolution has persisted across multiple domains despite the exponential rise in satellite images. Single Image Super-Resolution (SISR) aims to bridge th...
详细信息
暂无评论