咨询与建议

限定检索结果

文献类型

  • 774 篇 期刊文献
  • 706 篇 会议

馆藏范围

  • 1,480 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 954 篇 工学
    • 710 篇 计算机科学与技术...
    • 604 篇 软件工程
    • 181 篇 信息与通信工程
    • 114 篇 生物工程
    • 113 篇 控制科学与工程
    • 84 篇 电气工程
    • 66 篇 机械工程
    • 63 篇 电子科学与技术(可...
    • 62 篇 光学工程
    • 62 篇 化学工程与技术
    • 61 篇 生物医学工程(可授...
    • 39 篇 动力工程及工程热...
    • 30 篇 仪器科学与技术
    • 30 篇 材料科学与工程(可...
    • 25 篇 土木工程
    • 23 篇 建筑学
    • 23 篇 网络空间安全
    • 22 篇 交通运输工程
  • 649 篇 理学
    • 426 篇 数学
    • 148 篇 物理学
    • 134 篇 生物学
    • 117 篇 统计学(可授理学、...
    • 65 篇 化学
    • 51 篇 系统科学
  • 270 篇 管理学
    • 141 篇 管理科学与工程(可...
    • 139 篇 图书情报与档案管...
    • 56 篇 工商管理
  • 39 篇 法学
    • 30 篇 社会学
  • 39 篇 医学
    • 31 篇 临床医学
    • 26 篇 基础医学(可授医学...
  • 18 篇 农学
  • 15 篇 经济学
  • 12 篇 教育学
  • 6 篇 艺术学
  • 4 篇 哲学
  • 2 篇 文学
  • 2 篇 军事学

主题

  • 64 篇 feature extracti...
  • 53 篇 semantics
  • 37 篇 training
  • 26 篇 deep learning
  • 26 篇 optimization
  • 25 篇 image segmentati...
  • 24 篇 face recognition
  • 22 篇 visualization
  • 21 篇 contrastive lear...
  • 20 篇 predictive model...
  • 20 篇 machine learning
  • 19 篇 data mining
  • 19 篇 accuracy
  • 18 篇 computer science
  • 18 篇 computer vision
  • 17 篇 object detection
  • 17 篇 robustness
  • 15 篇 support vector m...
  • 15 篇 convolution
  • 15 篇 laboratories

机构

  • 170 篇 key laboratory o...
  • 90 篇 university of ch...
  • 63 篇 college of compu...
  • 57 篇 college of mathe...
  • 42 篇 school of comput...
  • 42 篇 peng cheng labor...
  • 34 篇 fujian provincia...
  • 33 篇 fujian key labor...
  • 32 篇 school of cyber ...
  • 32 篇 school of comput...
  • 29 篇 hunan provincial...
  • 28 篇 key laboratory o...
  • 26 篇 national enginee...
  • 23 篇 school of comput...
  • 22 篇 key laboratory o...
  • 21 篇 fujian key labor...
  • 21 篇 the key laborato...
  • 20 篇 key laboratory o...
  • 20 篇 key lab of intel...
  • 19 篇 engineering rese...

作者

  • 62 篇 huang qingming
  • 44 篇 xu qianqian
  • 31 篇 yang zhiyong
  • 28 篇 jiang kai
  • 28 篇 cao xiaochun
  • 27 篇 guo wenzhong
  • 26 篇 shi zhongzhi
  • 25 篇 xilin chen
  • 24 篇 ding shifei
  • 22 篇 shen linlin
  • 21 篇 shiguang shan
  • 20 篇 zou juan
  • 20 篇 qingming huang
  • 19 篇 zhang xingyi
  • 19 篇 zhang juan
  • 18 篇 guo kun
  • 17 篇 shan shiguang
  • 17 篇 zu-guo yu
  • 17 篇 zhongzhi shi
  • 16 篇 chen xilin

语言

  • 1,389 篇 英文
  • 67 篇 其他
  • 31 篇 中文
检索条件"机构=Science Computing Intelligent Information Processing"
1480 条 记 录,以下是271-280 订阅
排序:
DMNER: Biomedical Named Entity Recognition by Detection and Matching
DMNER: Biomedical Named Entity Recognition by Detection and ...
收藏 引用
2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024
作者: Bian, Junyi Jiang, Rongze Zhai, Weiqi Huang, Tianyang Huang, Xiaodi Zhou, Hong Zhu, Shanfeng Fudan University School of Computer Science Shanghai China Fudan University Institute of Science and Technology for Brain-Inspired Intelligence Shanghai China Charles Sturt University School of Computing Mathematics and Engineering Nsw Australia Atypon Systems Llc United Kingdom Zhangjiang Fudan International Innovation Center Fudan University Institute of Science and Technology for Brain-Inspired Intelligence Moe Frontiers Center for Brain Science Shanghai Key Lab of Intelligent Information Processing Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Shanghai China
Biomedical Named Entity Recognition (NER) is a crucial task in extracting information from biomedical texts. However, the diversity of professional terminology, semantic complexity, and the widespread presence of syno... 详细信息
来源: 评论
VANER: Leveraging Large Language Model for Versatile and Adaptive Biomedical Named Entity Recognition  27
VANER: Leveraging Large Language Model for Versatile and Ada...
收藏 引用
27th European Conference on Artificial Intelligence, ECAI 2024
作者: Bian, Junyi Zhai, Weiqi Huang, Xiaodi Zheng, Jiaxuan Zhu, Shanfeng School of Computer Science Fudan University Shanghai200433 China Institute of Science and Technology for Brain-Inspired Intelligence Fudan University China Ministry of Education Shanghai200433 China MOE Frontiers Center for Brain Science Fudan University Shanghai200433 China Zhangjiang Fudan International Innovation Center Shanghai200433 China Shanghai Key Lab of Intelligent Information Processing Fudan University Shanghai200433 China School of Computing and Mathematics Charles Sturt University AlburyNSW2640 Australia
The prevalent solution for BioNER involves using representation learning techniques combined with sequence ***, such methods are inherently task-specific, demonstrate poor generalizability, and often require a dedicat... 详细信息
来源: 评论
Investigation on a quantum algorithm for linear differential equations
arXiv
收藏 引用
arXiv 2024年
作者: Dong, Xiaojing Peng, Yizhe Tang, Qili Yang, Yin Yu, Yue Hunan Key Laboratory for Computation and Simulation in Science and Engineering Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education National Center for Applied Mathematics in Hunan School of Mathematics and Computational Science Xiangtan University Hunan Xiangtan411105 China
Ref. [BCOW17] introduced a pioneering quantum approach (coined BCOW algorithm) for solving linear differential equations with optimal error tolerance. Originally designed for a specific class of diagonalizable linear ... 详细信息
来源: 评论
A Unified Framework Integrating Knowledge and Data for Collaborative Root Cause Identification
A Unified Framework Integrating Knowledge and Data for Colla...
收藏 引用
Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), International Conference on
作者: Jiefei Yu Zicheng Cao Siyi He Zuyi Gu Yingcheng Xu Kai Zhong Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education Institutes of Physical Science and Information Technology Anhui University Anhui China Data Science and Big Data Technology School of Big Data and Statistics Anhui University Anhui China
Capturing the root cause and propagation path of the fault is critical to ensuring the safety and efficiency of industrial processes, especially those that inadequately utilize process knowledge and data. To address t... 详细信息
来源: 评论
Investigation of double-gyroid grain boundaries beyond twinning
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Jing Sun, Zhangpeng Jiang, Kai Xu, Jie Hunan Key Laboratory for Computation and Simulation in Science and Engineering Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education School of Mathematics and Computational Science Xiangtan University Hunan Xiangtan411105 China Chinese Academy of Sciences Beijing China
We study four double-gyroid (DG) grain boundaries (GBs) with different orientations numerically using the Landau–Brazovskii free energy, including the (422) twin boundary studied recently, a network switching GB, and... 详细信息
来源: 评论
Label Distribution Feature Selection Based on Neighborhood Rough Set
SSRN
收藏 引用
SSRN 2024年
作者: Wu, Yilin Guo, Wenzhong Lin, Yaojin College of Computer and Data Science Fuzhou University Fuzhou350116 China Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China School of Computer Science Minnan Normal University Zhangzhou363000 China
In label distribution learning, an instance is involved with many labels in different importance degrees, and the feature space of instances is accompanied with thousands of redundant and/or irrelevant features. There... 详细信息
来源: 评论
DEGSTalk: Decomposed Per-Embedding Gaussian Fields for Hair-Preserving Talking Face Synthesis
DEGSTalk: Decomposed Per-Embedding Gaussian Fields for Hair-...
收藏 引用
International Conference on Acoustics, Speech, and Signal processing (ICASSP)
作者: Kaijun Deng Dezhi Zheng Jindong Xie Jinbao Wang Weicheng Xie Linlin Shen Siyang Song Computer Vision Institute School of Computer Science and Software Engineering Shenzhen University National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Guangdong Provincial Key Laboratory of Intelligent Information Processing Department of Computer Science University of Exeter
Accurately synthesizing talking face videos and capturing fine facial features for individuals with long hair presents a significant challenge. To tackle these challenges in existing methods, we propose a decomposed p... 详细信息
来源: 评论
Few-shot Class-Incremental Semantic Segmentation via Pseudo-Labeling and Knowledge Distillation
arXiv
收藏 引用
arXiv 2023年
作者: Jiang, Chengjia Wang, Tao Li, Sien Wang, Jinyang Wang, Shirui Antoniou, Antonios Fujian Provincial Key Laboratory of Information Processing and Intelligent Control Minjiang University Fuzhou China The Key Laboratory of Cognitive Computing and Intelligent Information Processing of Fujian Education Institutions Wuyi University Wuyishan China College of Computer and Data Science Fuzhou University Fuzhou China Department of Computer Science and Engineering European University Cyprus Nicosia Cyprus
We address the problem of learning new classes for semantic segmentation models from few examples, which is challenging because of the following two reasons. Firstly, it is difficult to learn from limited novel data t... 详细信息
来源: 评论
AN EFFICIENT NULLSPACE-PRESERVING SADDLE SEARCH METHOD FOR PHASE TRANSITIONS INVOLVING TRANSLATIONAL INVARIANCE
arXiv
收藏 引用
arXiv 2023年
作者: Cui, Gang Jiang, Kai Zhou, Tiejun Hunan Key Laboratory for Computation and Simulation in Science and Engineering Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education School of Mathematics and Computational Science Xiangtan University Hunan Xiangtan411105 China
In this work, we propose an efficient nullspace-preserving saddle search (NPSS) method for a class of phase transitions involving translational invariance, where the critical states are often degenerate. The NPSS meth... 详细信息
来源: 评论
Learning Open-vocabulary Semantic Segmentation Models From Natural Language Supervision
arXiv
收藏 引用
arXiv 2023年
作者: Xu, Jilan Hou, Junlin Zhang, Yuejie Feng, Rui Wang, Yi Qiao, Yu Xie, Weidi School of Computer Science Shanghai Key Lab of Intelligent Information Processing Shanghai Collaborative Innovation Center of Intelligent Visual Computing Fudan University China Shanghai AI Laboratory China Shanghai Jiaotong University China
In this paper, we consider the problem of open-vocabulary semantic segmentation (OVS), which aims to segment objects of arbitrary classes instead of pre-defined, closed-set categories. The main contributions are as fo... 详细信息
来源: 评论