咨询与建议

限定检索结果

文献类型

  • 791 篇 期刊文献
  • 730 篇 会议

馆藏范围

  • 1,521 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 993 篇 工学
    • 747 篇 计算机科学与技术...
    • 616 篇 软件工程
    • 185 篇 信息与通信工程
    • 133 篇 控制科学与工程
    • 116 篇 生物工程
    • 90 篇 电气工程
    • 67 篇 机械工程
    • 66 篇 电子科学与技术(可...
    • 64 篇 光学工程
    • 63 篇 生物医学工程(可授...
    • 62 篇 化学工程与技术
    • 39 篇 动力工程及工程热...
    • 31 篇 仪器科学与技术
    • 30 篇 材料科学与工程(可...
    • 25 篇 土木工程
    • 24 篇 建筑学
    • 23 篇 网络空间安全
    • 22 篇 交通运输工程
  • 665 篇 理学
    • 435 篇 数学
    • 157 篇 物理学
    • 134 篇 生物学
    • 118 篇 统计学(可授理学、...
    • 68 篇 化学
    • 51 篇 系统科学
  • 272 篇 管理学
    • 142 篇 管理科学与工程(可...
    • 140 篇 图书情报与档案管...
    • 56 篇 工商管理
  • 42 篇 医学
    • 34 篇 临床医学
    • 26 篇 基础医学(可授医学...
  • 39 篇 法学
    • 30 篇 社会学
  • 18 篇 农学
  • 15 篇 经济学
  • 12 篇 教育学
  • 7 篇 艺术学
  • 4 篇 哲学
  • 2 篇 文学
  • 2 篇 军事学

主题

  • 66 篇 feature extracti...
  • 53 篇 semantics
  • 38 篇 training
  • 27 篇 deep learning
  • 26 篇 optimization
  • 25 篇 image segmentati...
  • 24 篇 face recognition
  • 24 篇 contrastive lear...
  • 22 篇 visualization
  • 20 篇 data mining
  • 20 篇 predictive model...
  • 20 篇 machine learning
  • 19 篇 computer science
  • 19 篇 accuracy
  • 18 篇 object detection
  • 18 篇 computer vision
  • 17 篇 robustness
  • 16 篇 reinforcement le...
  • 15 篇 support vector m...
  • 15 篇 convolution

机构

  • 171 篇 key laboratory o...
  • 90 篇 university of ch...
  • 65 篇 college of compu...
  • 57 篇 college of mathe...
  • 44 篇 school of comput...
  • 42 篇 peng cheng labor...
  • 35 篇 fujian provincia...
  • 33 篇 fujian key labor...
  • 33 篇 national enginee...
  • 32 篇 school of cyber ...
  • 32 篇 school of comput...
  • 29 篇 hunan provincial...
  • 28 篇 key laboratory o...
  • 24 篇 school of comput...
  • 23 篇 key laboratory o...
  • 22 篇 fujian key labor...
  • 21 篇 the key laborato...
  • 21 篇 guangdong provin...
  • 20 篇 engineering rese...
  • 20 篇 key laboratory o...

作者

  • 64 篇 huang qingming
  • 47 篇 xu qianqian
  • 34 篇 yang zhiyong
  • 29 篇 guo wenzhong
  • 28 篇 jiang kai
  • 28 篇 cao xiaochun
  • 26 篇 shi zhongzhi
  • 25 篇 shen linlin
  • 25 篇 xilin chen
  • 24 篇 ding shifei
  • 21 篇 shiguang shan
  • 20 篇 zou juan
  • 20 篇 qingming huang
  • 19 篇 zhang xingyi
  • 19 篇 zhang juan
  • 18 篇 guo kun
  • 17 篇 shan shiguang
  • 17 篇 zu-guo yu
  • 17 篇 zhongzhi shi
  • 16 篇 chen xilin

语言

  • 1,364 篇 英文
  • 133 篇 其他
  • 33 篇 中文
检索条件"机构=Science Computing Intelligent Information Processing"
1521 条 记 录,以下是691-700 订阅
排序:
Understanding the Robustness of 3D Object Detection with Bird’s-Eye-View Representations in Autonomous Driving
arXiv
收藏 引用
arXiv 2023年
作者: Zhu, Zijian Zhang, Yichi Chen, Hai Dong, Yinpeng Zhao, Shu Ding, Wenbo Zhong, Jiachen Zheng, Shibao Institute of Image Communication and Network Engineering Shanghai Jiao Tong University China Dept. of Comp. Sci. and Tech. Institute for AI THBI Lab BNRist Center Tsinghua University China Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education School of Computer Science and Technology Anhui University Information Materials and Intelligent Sensing Laboratory of Anhui Province China SAIC Motor AI Lab China Zhongguancun Laboratory China
3D object detection is an essential perception task in autonomous driving to understand the environments. The Bird’s-Eye-View (BEV) representations have significantly improved the performance of 3D detectors with cam... 详细信息
来源: 评论
FaceBench: A Multi-View Multi-Level Facial Attribute VQA Dataset for Benchmarking Face Perception MLLMs
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Xiaoqin Ma, Xusen Hou, Xianxu Ding, Meidan Li, Yudong Chen, Junliang Chen, Wenting Peng, Xiaoyang Shen, Linlin Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China AIAC Xi’an Jiaotong-Liverpool University China Tsinghua University China The Hong Kong Polytechnic University Hong Kong City University of Hong Kong Hong Kong Sun Yat-sen University China
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in various tasks. However, effectively evaluating these MLLMs on face perception remains largely unexplored. To address this gap, we i...
来源: 评论
Size-Invariance Matters: Rethinking Metrics and Losses for Imbalanced Multi-object Salient Object Detection
arXiv
收藏 引用
arXiv 2024年
作者: Li, Feiran Xu, Qianqian Bao, Shilong Yang, Zhiyong Cong, Runmin Cao, Xiaochun Huang, Qingming Institute of Information Engineering Chinese Academy of Sciences Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China Institute of Information Science Beijing Jiaotong University Beijing China School of Control Science and Engineering Shandong University Jinan China Key Laboratory of Machine Intelligence and System Control Ministry of Education Jinan China School of Cyber Science and Tech. Sun Yat-Sen University Shenzhen Campus China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
This paper explores the size-invariance of evaluation metrics in Salient Object Detection (SOD), especially when multiple targets of diverse sizes co-exist in the same image. We observe that current metrics are size-s... 详细信息
来源: 评论
Learning Cross-view Geo-localization Embeddings via Dynamic Weighted Decorrelation Regularization
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Tingyu Zheng, Zhedong Zhu, Zunjie Gao, Yuhan Yang, Yi Yan, Chenggang The Intelligent Information Processing Lab Hangzhou Dianzi University 310018 China The Sea-NExT Joint Lab School of Computing National University of Singapore Singapore118404 Singapore The Lishui Institute of Hangzhou Dianzi University 323000 China The School of Computer Science Zhejiang University 310027 China
Cross-view geo-localization aims to spot images of the same location shot from two platforms, e.g., the drone platform and the satellite platform. Existing methods usually focus on optimizing the distance between one ... 详细信息
来源: 评论
Large Generative Model Assisted 3D Semantic Communication
arXiv
收藏 引用
arXiv 2024年
作者: Jiang, Feibo Peng, Yubo Dong, Li Wang, Kezhi Yang, Kun Pan, Cunhua You, Xiaohu Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China School of Information Science and Engineering Hunan Normal University Changsha China Changsha Social Laboratory of Artificial Intelligence Hunan University of Technology and Business Changsha China The Department of Computer Science Brunel University London United Kingdom The School of Computer Science and Electronic Engineering University of Essex ColchesterCO4 3SQ United Kingdom Changchun Institute of Technology China The National Mobile Communications Research Laboratory Southeast University Nanjing210096 China The Frontiers Science Center for Mobile Information Communication and Security National Mobile Communications Research Laboratory Southeast University Nanjing China The Purple Mountain Laboratories Nanjing China
Semantic Communication (SC) is a novel paradigm for data transmission in 6G. However, there are several challenges posed when performing SC in 3D scenarios: 1) 3D semantic extraction;2) Latent semantic redundancy;and ... 详细信息
来源: 评论
A Blockchain-Based Multi-Cloud Storage Data Consistency Verification Scheme
A Blockchain-Based Multi-Cloud Storage Data Consistency Veri...
收藏 引用
IEEE International Conference on Big Data and Cloud computing (BdCloud)
作者: Feiyu Wang Jian-tao Zhou Hao Wang Xu Guo College of Computer Science Inner Mongolia University Hohhot China Inner Mongolia Engineering Laboratory for Cloud Computing and Service Software Inner Mongolia Key Laboratory of Social Computing and Data Processing Inner Mongolia Engineering Laboratory for Big Data Analysis Technology Engineering Research Center of Ecological Big Data Ministry of Education National & Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian China
Users worldwide widely use cloud storage because of its efficiency, convenience, and high availability. Multi-cloud storage is usually selected to ensure the high availability of data. Unfortunately, when data is migr... 详细信息
来源: 评论
DEEPACC:Automate Chromosome Classification Based On Metaphase Images Using Deep Learning Framework Fused With Priori Knowledge
DEEPACC:Automate Chromosome Classification Based On Metaphas...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Li Xiao Chunlong Luo Ningbo HuaMei Hospital University of the Chinese Academy of Sciences (UCAS) Advanced Computer Research Center Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Science
Chromosome classification is an important but difficult and tedious task in karyotyping. Previous methods only classify manually segmented single chromosome, which is far from clinical practice. In this work, we propo... 详细信息
来源: 评论
RECOVERY TYPE A POSTERIORI ERROR ESTIMATION OF AN ADAPTIVE FINITE ELEMENT METHOD FOR CAHN-HILLIARD EQUATION
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Yaoyao Huang, Yunqing Yi, Nianyu Yin, Peimeng School of Mathematics and Statistics Anhui Normal University Wuhu241000 China Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education School of Mathematics and Computational Science Xiangtan University Hunan Xiangtan411105 China Hunan Key Laboratory for Computation and Simulation in Science and Engineering School of Mathematics and Computational Science Xiangtan University Hunan Xiangtan411105 China Multiscale Methods and Dynamics Group Computer Science and Mathematics Division Oak Ridge National Laboratory Oak RidgeTN37831 United States
In this paper, we derive a novel recovery type a posteriori error estimation of the Crank-Nicolson finite element method for the Cahn-Hilliard equation. To achieve this, we employ both the elliptic reconstruction tech... 详细信息
来源: 评论
An Interpretable MRI Reconstruction Network with Two-grid-cycle Correction and Geometric Prior Distillation
arXiv
收藏 引用
arXiv 2022年
作者: Fan, Xiaohong Yang, Yin Chen, Ke Zhang, Jianping Dong, Ke The School of Mathematics and Computational Science Xiangtan University Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education Xiangtan411105 China The School of Mathematics and Computational Science Xiangtan University Hunan National Applied Mathematics Center Hunan Key Laboratory for Computation and Simulation in Science and Engineering Xiangtan411105 China Centre for Mathematical Imaging Techniques Department of Mathematical Sciences The University of Liverpool Merseyside LiverpoolL6972L United Kingdom The School of Mathematics and Computational Science Xiangtan University Hunan National Applied Mathematics Center Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education Xiangtan411105 China Department of Radiation Oncology Xiangtan Central Hospital Xiangtan411101 China
Although existing deep learning compressed-sensing-based Magnetic Resonance Imaging (CS-MRI) methods have achieved considerably impressive performance, explainability and generalizability continue to be challenging fo... 详细信息
来源: 评论
Nest-DGIL: Nesterov-optimized Deep Geometric Incremental Learning for CS Image Reconstruction
arXiv
收藏 引用
arXiv 2023年
作者: Fan, Xiaohong Yang, Yin Chen, Ke Feng, Yujie Zhang, Jianping The School of Mathematics and Computational Science Xiangtan University Hunan Key Laboratory for Computation and Simulation in Science and Engineering Xiangtan411105 China The School of Mathematics and Computational Science Xiangtan University Hunan National Applied Mathematics Center Xiangtan411105 China The Centre for Mathematical ImagingTechniques Department of Mathematical Sciences The University of Liverpool Department of Mathematics and Statistics University of Strathclyde Glasgow United Kingdom The School of Mathematics and Computational Science Xiangtan University The Key Laboratory of Intelligent Computing & Information Processing The Ministry of Education Xiangtan411105 China
Proximal gradient-based optimization is one of the most common strategies to solve inverse problem of images, and it is easy to implement. However, these techniques often generate heavy artifacts in image reconstructi... 详细信息
来源: 评论