咨询与建议

限定检索结果

文献类型

  • 801 篇 期刊文献
  • 726 篇 会议

馆藏范围

  • 1,527 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 987 篇 工学
    • 738 篇 计算机科学与技术...
    • 617 篇 软件工程
    • 185 篇 信息与通信工程
    • 123 篇 控制科学与工程
    • 114 篇 生物工程
    • 92 篇 电气工程
    • 67 篇 机械工程
    • 65 篇 光学工程
    • 65 篇 电子科学与技术(可...
    • 62 篇 化学工程与技术
    • 61 篇 生物医学工程(可授...
    • 38 篇 动力工程及工程热...
    • 30 篇 仪器科学与技术
    • 30 篇 材料科学与工程(可...
    • 26 篇 土木工程
    • 26 篇 网络空间安全
    • 24 篇 建筑学
    • 24 篇 交通运输工程
  • 664 篇 理学
    • 437 篇 数学
    • 152 篇 物理学
    • 135 篇 生物学
    • 118 篇 统计学(可授理学、...
    • 65 篇 化学
    • 51 篇 系统科学
  • 273 篇 管理学
    • 145 篇 管理科学与工程(可...
    • 138 篇 图书情报与档案管...
    • 56 篇 工商管理
  • 40 篇 法学
    • 31 篇 社会学
  • 39 篇 医学
    • 31 篇 临床医学
    • 26 篇 基础医学(可授医学...
  • 18 篇 农学
  • 16 篇 教育学
  • 15 篇 经济学
  • 6 篇 艺术学
  • 4 篇 哲学
  • 2 篇 文学
  • 2 篇 军事学

主题

  • 67 篇 feature extracti...
  • 54 篇 semantics
  • 38 篇 training
  • 27 篇 deep learning
  • 27 篇 optimization
  • 25 篇 image segmentati...
  • 24 篇 face recognition
  • 24 篇 contrastive lear...
  • 22 篇 visualization
  • 21 篇 machine learning
  • 20 篇 data mining
  • 20 篇 predictive model...
  • 19 篇 reinforcement le...
  • 18 篇 object detection
  • 18 篇 accuracy
  • 18 篇 computer vision
  • 18 篇 robustness
  • 17 篇 computer science
  • 16 篇 convolution
  • 16 篇 computational mo...

机构

  • 175 篇 key laboratory o...
  • 91 篇 university of ch...
  • 64 篇 college of compu...
  • 57 篇 college of mathe...
  • 48 篇 school of comput...
  • 43 篇 peng cheng labor...
  • 36 篇 fujian provincia...
  • 33 篇 school of cyber ...
  • 33 篇 national enginee...
  • 32 篇 fujian key labor...
  • 32 篇 school of comput...
  • 29 篇 hunan provincial...
  • 27 篇 key laboratory o...
  • 24 篇 school of comput...
  • 23 篇 key laboratory o...
  • 22 篇 fujian key labor...
  • 21 篇 the key laborato...
  • 21 篇 guangdong provin...
  • 20 篇 engineering rese...
  • 20 篇 key laboratory o...

作者

  • 69 篇 huang qingming
  • 51 篇 xu qianqian
  • 38 篇 yang zhiyong
  • 29 篇 guo wenzhong
  • 29 篇 cao xiaochun
  • 27 篇 jiang kai
  • 26 篇 shen linlin
  • 25 篇 xilin chen
  • 25 篇 shi zhongzhi
  • 23 篇 ding shifei
  • 21 篇 shiguang shan
  • 20 篇 zou juan
  • 20 篇 qingming huang
  • 19 篇 bao shilong
  • 19 篇 zhang juan
  • 18 篇 guo kun
  • 17 篇 shan shiguang
  • 17 篇 zhang xingyi
  • 17 篇 zu-guo yu
  • 17 篇 zhongzhi shi

语言

  • 1,244 篇 英文
  • 262 篇 其他
  • 37 篇 中文
检索条件"机构=Science Computing and Intelligent Information Processing"
1527 条 记 录,以下是391-400 订阅
排序:
Improving Neural Radiance Fields with Depth-aware Optimization for Novel View Synthesis
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Shu Li, Junyao Zhang, Yang Zou, Beiji The School of Computer Science School of Cyberspace Security Xiangtan University Xiangtan China Key Laboratory of Intelligent Computing & Information Processing Ministry of Education Xiangtan China School of Computer Science and engineering Central South University Changsha China
With dense inputs, Neural Radiance Fields (NeRF) is able to render photo-realistic novel views under static conditions. Although the synthesis quality is excellent, existing NeRF-based methods fail to obtain moderate ... 详细信息
来源: 评论
High-accurate and efficient numerical algorithms for the self-consistent field theory of liquid-crystalline polymers
arXiv
收藏 引用
arXiv 2024年
作者: He, Zhijuan Jiang, Kai Tan, Liwei Wang, Xin Hunan Key Laboratory for Computation and Simulation in Science and Engineering Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education School of Mathematics and Computational Science Xiangtan University Hunan Xiangtan411105 China School of Mathematical Sciences Shanghai Jiao Tong University Shanghai200240 China
Self-consistent field theory (SCFT) is one of the most widely-used framework in studying the equilibrium phase behaviors of inhomogenous polymers. For liquid crystalline polymeric systems, the main numerical challenge... 详细信息
来源: 评论
Performer: A High-Performance Global-Local Model-Augmented with Dual Network Interaction Mechanism
收藏 引用
IEEE Transactions on Cognitive and Developmental Systems 2024年
作者: Tan, Dayu Hao, Rui Hua, Linfeng Xu, Qi Su, Yansen Zheng, Chunhou Zhong, Weimin Anhui University Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education Institutes of Physical Science and Information Technology Hefei230601 China East China University of Science and Technology Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education Shanghai200237 China Dalian University of Technology School of Computer Science and Technology Dalian116024 China
In deep learning, Convolutional Neural Networks (CNNs) focus on local information through convolutional kernels, while transformers attend to global information using self-attention mechanisms. The union of these dist... 详细信息
来源: 评论
Semi-Supervised Feature Selection Based on Fuzzy Related Family
SSRN
收藏 引用
SSRN 2023年
作者: Yang, Tian Guo, Zhijun Li, Yuan-Jiang Deng, Yanfang Qian, Yuhua Hunan Provincial Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Hunan Changsha410081 China Institute of Big Data Science and Industry Shanxi University Shanxi Taiyuan030006 China
Existing machine learning algorithms face the problems of label-missing and high dimensionality. Feature selection is an effective dimensionality reduction method that can improve the efficiency and accuracy of subseq... 详细信息
来源: 评论
Balanced Contrastive Learning for Long-Tailed Visual Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Zhu, Jianggang Wang, Zheng Chen, Jingjing Chen, Yi-Ping Phoebe Jiang, Yu-Gang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University China Shanghai Collaborative Innovation Center on Intelligent Visual Computing China Department of Computer Science and Information Technology La Trobe University Australia
Real-world data typically follow a long-tailed distribution, where a few majority categories occupy most of the data while most minority categories contain a limited number of samples. Classification models minimizing... 详细信息
来源: 评论
Simple and Efficient Knowledge Graph Attention Network for Recommendation
Simple and Efficient Knowledge Graph Attention Network for R...
收藏 引用
Cyber-Physical Social Intelligence (ICCSI), International Conference on
作者: Yangding Li Shaobin Fu Hao Feng Yangyang Zeng Jinghao Wang Zhihao Jiang Lvyun Zhang School of Information Science and Engineering Hunan Provincial Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha China Shenzhen Lazada Software Technology Company Limited Shenzhen China School of Big Data and Computer Science Hechi University Guangxi China
Existing methods for modeling recommendation systems based on knowledge graphs include embedding-based, pathbased, and propagation-based methods. The embedding-based approach is flexible but more suitable for intra-gr...
来源: 评论
AR-CNN: an attention ranking network for learning urban perception
收藏 引用
science China(information sciences) 2022年 第1期65卷 164-174页
作者: Zhetao LI Ziwen CHEN Wei-Shi ZHENG Sangyoon OH Kien NGUYEN Key Laboratory of Hunan Province for Internet of Things and Information Security Xiangtan University Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education Xiangtan University School of Data and Computer Science Sun Yat-sen University Department of Computer and Information Engineering Ajou University Graduate School of Engineering Chiba University
An increasing number of deep learning methods is being applied to quantify the perception of urban environments, study the relationship between urban appearance and resident safety, and improve urban appearance. Most ... 详细信息
来源: 评论
Label Distribution Learning with Correlation information
SSRN
收藏 引用
SSRN 2024年
作者: Wu, Yilin Lin, Yaojin Guo, Wenzhong Ding, Weiping College of Computer and Data Science Fuzhou University Fuzhou350116 China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China Key Laboratory of Data Science and Intelligence Application Minnan Normal University Zhangzhou363000 China School of Information Science and Technology Nantong University Nantong226019 China
Label distribution learning quantifies the label space for each instance and has widely applicability in different fields. However, most existing works primarily focus on label correlation, but they still have a limit... 详细信息
来源: 评论
ABCD-HN: An Artificial Network Benchmark for Community Detection on Heterogeneous Networks  18th
ABCD-HN: An Artificial Network Benchmark for Community Dete...
收藏 引用
18th CCF Conference on Computer Supported Cooperative Work and Social computing, ChineseCSCW 2023
作者: Liu, Junjie Guo, Kun Wu, Ling Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China College of Computer and Data Science/College of Software Fuzhou University Fuzhou350108 China Key Laboratory of Spatial Data Mining and Information Sharing Ministry of Education Fuzhou350108 China
Community detection is essential for identifying cohesive groups in complex networks. Artificial benchmarks are critical for evaluating community detection algorithms, offering controlled environments with known commu... 详细信息
来源: 评论
Gradually Vanishing Gap in Prototypical Network for Unsupervised Domain Adaptation
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Shanshan Zhou, Hao Yang, Xun He, Zhenwei Wang, Mengzhu Zhang, Xingyi Wang, Meng The Information Materials and Intelligent Sensing Laboratory of Anhui Province Institutes of Physical Science and Information Technology Anhui University Hefei230601 China The Department of Electronic Engineering and Information Science School of Information Science and Technology University of Science and Technology of China Hefei230026 China The College of Computer Science and Engineering Chongqing University of Technology Chongqing400054 China The School of Computer Science and Information Engineering Hefei University of Technology Hefei230009 China The School of Artificial Intelligence Hebei University of Technology Tianjin China The Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education The School of Computer Science and Technology Anhui University Hefei230601 China
Unsupervised domain adaptation (UDA) is a critical problem for transfer learning, which aims to transfer the semantic information from labeled source domain to unlabeled target domain. Recent advancements in UDA model... 详细信息
来源: 评论