咨询与建议

限定检索结果

文献类型

  • 781 篇 期刊文献
  • 726 篇 会议

馆藏范围

  • 1,507 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 973 篇 工学
    • 726 篇 计算机科学与技术...
    • 612 篇 软件工程
    • 181 篇 信息与通信工程
    • 119 篇 控制科学与工程
    • 113 篇 生物工程
    • 83 篇 电气工程
    • 65 篇 机械工程
    • 63 篇 光学工程
    • 63 篇 电子科学与技术(可...
    • 62 篇 化学工程与技术
    • 61 篇 生物医学工程(可授...
    • 38 篇 动力工程及工程热...
    • 32 篇 材料科学与工程(可...
    • 30 篇 仪器科学与技术
    • 26 篇 土木工程
    • 24 篇 建筑学
    • 23 篇 网络空间安全
    • 22 篇 交通运输工程
  • 657 篇 理学
    • 433 篇 数学
    • 152 篇 物理学
    • 134 篇 生物学
    • 117 篇 统计学(可授理学、...
    • 66 篇 化学
    • 51 篇 系统科学
  • 269 篇 管理学
    • 141 篇 管理科学与工程(可...
    • 138 篇 图书情报与档案管...
    • 55 篇 工商管理
  • 40 篇 法学
    • 31 篇 社会学
  • 38 篇 医学
    • 30 篇 临床医学
    • 25 篇 基础医学(可授医学...
  • 18 篇 农学
  • 15 篇 经济学
  • 15 篇 教育学
  • 6 篇 艺术学
  • 4 篇 哲学
  • 2 篇 文学
  • 2 篇 军事学

主题

  • 67 篇 feature extracti...
  • 54 篇 semantics
  • 38 篇 training
  • 26 篇 deep learning
  • 26 篇 optimization
  • 25 篇 image segmentati...
  • 24 篇 face recognition
  • 23 篇 contrastive lear...
  • 22 篇 visualization
  • 21 篇 machine learning
  • 20 篇 data mining
  • 20 篇 predictive model...
  • 18 篇 object detection
  • 18 篇 reinforcement le...
  • 18 篇 accuracy
  • 18 篇 computer vision
  • 18 篇 robustness
  • 17 篇 computer science
  • 16 篇 convolution
  • 16 篇 computational mo...

机构

  • 172 篇 key laboratory o...
  • 90 篇 university of ch...
  • 64 篇 college of compu...
  • 57 篇 college of mathe...
  • 44 篇 school of comput...
  • 42 篇 peng cheng labor...
  • 36 篇 fujian provincia...
  • 33 篇 national enginee...
  • 32 篇 fujian key labor...
  • 32 篇 school of cyber ...
  • 32 篇 school of comput...
  • 29 篇 hunan provincial...
  • 26 篇 key laboratory o...
  • 24 篇 school of comput...
  • 23 篇 key laboratory o...
  • 22 篇 fujian key labor...
  • 21 篇 the key laborato...
  • 21 篇 guangdong provin...
  • 20 篇 engineering rese...
  • 20 篇 key laboratory o...

作者

  • 64 篇 huang qingming
  • 47 篇 xu qianqian
  • 34 篇 yang zhiyong
  • 29 篇 guo wenzhong
  • 28 篇 cao xiaochun
  • 27 篇 jiang kai
  • 26 篇 shen linlin
  • 25 篇 xilin chen
  • 25 篇 shi zhongzhi
  • 23 篇 ding shifei
  • 21 篇 shiguang shan
  • 20 篇 zou juan
  • 20 篇 qingming huang
  • 19 篇 zhang juan
  • 18 篇 guo kun
  • 17 篇 shan shiguang
  • 17 篇 zhang xingyi
  • 17 篇 zu-guo yu
  • 17 篇 zhongzhi shi
  • 16 篇 chen xilin

语言

  • 1,298 篇 英文
  • 188 篇 其他
  • 35 篇 中文
检索条件"机构=Science Computing and Intelligent Information Processing"
1507 条 记 录,以下是61-70 订阅
排序:
Reinforcement Learning with Token-level Feedback for Controllable Text Generation
Reinforcement Learning with Token-level Feedback for Control...
收藏 引用
2024 Findings of the Association for Computational Linguistics: NAACL 2024
作者: Li, Wendi Wei, Wei Xu, Kaihe Xie, Wenfeng Chen, Dangyang Cheng, Yu Cognitive Computing and Intelligent Information Processing Laboratory School of Computer Science and Technology Huazhong University of Science and Technology China China Ping An Property & Casualty Insurance Company of China China The Chinese University of Hong Kong Hong Kong
To meet the requirements of real-world applications, it is essential to control generations of large language models (LLMs). Prior research has tried to introduce reinforcement learning (RL) into controllable text gen... 详细信息
来源: 评论
IGED:Towards intelligent DDoS Detection Model Using Improved Generalized Entropy and DNN
收藏 引用
Computers, Materials & Continua 2024年 第8期80卷 1851-1866页
作者: Yanhua Liu Yuting Han HuiChen Baokang Zhao XiaofengWang Ximeng Liu College of Computer and Data Science Fuzhou UniversityFuzhou350108China Engineering Research Center of Big Data Intelligence Ministry of EducationFuzhou350108China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou UniversityFuzhou350108China College of Computer National University of Defense TechnologyChangsha410073China
As the scale of the networks continually expands,the detection of distributed denial of service(DDoS)attacks has become increasingly *** propose an intelligent detection model named IGED by using improved generalized ... 详细信息
来源: 评论
A Faster Parameterized Algorithm for Bipartite 1-Sided Vertex Explosion  16th
A Faster Parameterized Algorithm for Bipartite 1-Sided Vert...
收藏 引用
16th Annual International Conference on Combinatorial Optimization and Applications, COCOA 2023
作者: Liu, Yunlong Xiao, Guang Liu, Ao Wu, Di Huang, Jingui College of Information Science and Engineering Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing Hunan Normal University Changsha410081 China Xiangtan University Xiangtan411101 China School of Computer Science and Engineering Central South University Changsha410083 China
Given a bipartite graph G = (T∪ B, E), the problem bipartite 1-sided vertex explosion is to decide whether there exists a planar 2-layer embedding of G after exploding at most k vertices of B. For this problem, which... 详细信息
来源: 评论
Chemical environment adaptive learning for optical band gap prediction of doped graphitic carbon nitride nanosheets
收藏 引用
Neural computing and Applications 2025年 第5期37卷 3287-3301页
作者: Chen, Chen Xu, Enze Yang, Defu Yan, Chenggang Wei, Tao Chen, Hanning Wei, Yong Chen, Minghan Intelligent Information Processing Laboratory Hangzhou Dianzi University Hangzhou China Department of Computer Science Wake Forest University Winston-SalemNC United States Department of Chemical Engineering Howard University WashingtonDC United States Texas Advanced Computing Center University of Texas at Austin AustinTX United States Department of Computer Science & Information Systems University of North Georgia DahlonegaGA United States
This study presents a new machine learning algorithm, named Chemical Environment Graph Neural Network (ChemGNN), designed to accelerate materials property prediction and advance new materials discovery. Graphitic carb... 详细信息
来源: 评论
Optimized Multi-kernel Dictionary Learning and Its Application in Complex Industrial Processes Monitoring  41
Optimized Multi-kernel Dictionary Learning and Its Applicati...
收藏 引用
第41届中国控制会议
作者: Kai Zhong Zhengping Ding Donghui Pan Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education Institutes of Physical Science and Information TechnologyAnhui University School of Mathematical Science Anhui University
The data in the chemical process is often complex in structure,and the coupling and correlation between variables are ***,it is difficult for conventional monitoring models to learn the essential characteristics of pr... 详细信息
来源: 评论
AR-CNN: an attention ranking network for learning urban perception
收藏 引用
science China(information sciences) 2022年 第1期65卷 164-174页
作者: Zhetao LI Ziwen CHEN Wei-Shi ZHENG Sangyoon OH Kien NGUYEN Key Laboratory of Hunan Province for Internet of Things and Information Security Xiangtan University Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education Xiangtan University School of Data and Computer Science Sun Yat-sen University Department of Computer and Information Engineering Ajou University Graduate School of Engineering Chiba University
An increasing number of deep learning methods is being applied to quantify the perception of urban environments, study the relationship between urban appearance and resident safety, and improve urban appearance. Most ... 详细信息
来源: 评论
Noise-tolerant fixed-time leader-follower consensus controller design for multi-agent systems via fuzzy-neural-network
收藏 引用
Neural computing and Applications 2025年 1-23页
作者: Dai, Jianhua Tan, Ping Xiao, Lin Wang, Zidong He, Yongjun Zuo, Qiuyue Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing MOE-LCSM Hunan Normal University Hunan Changsha410081 China Department of Computer Science Brunel University London UxbridgeUB8 3PH United Kingdom
The leader-follower consensus control problem in multi-agent systems (MASs) is critical and has received significant attention. However, the simultaneous achievement of fixed-time stability and robustness is often cha... 详细信息
来源: 评论
Fuzzy information Quantity Measurement and Feature Selection by Macrogranular Entropy
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2025年
作者: Zhu, Zhilin Zhang, Chucai Dai, Jianhua Hunan Normal University Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing College of Information Science and Engineering Changsha410081 China
Feature selection is an important data preprocessing process in artificial intelligence, which aims to eliminate redundant features while retaining essential features. Measuring feature significance and relevance betw... 详细信息
来源: 评论
Online Multi-label Streaming Feature Selection with Missing Features by Dual-Space Consistency information Measurement
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2025年
作者: Dai, Jianhua Wang, Jie Hunan Normal University Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing College of Information Science and Engineering Changsha410081 China
Multi-label feature selection is critical to address the challenges of high dimensionality and computational complexity in multi-label learning. However, in some practical applications, a more complex challenge is the... 详细信息
来源: 评论
Few-Shot Class-Incremental Semantic Segmentation via Pseudo-Labeling and Knowledge Distillation  4
Few-Shot Class-Incremental Semantic Segmentation via Pseudo-...
收藏 引用
4th International Conference on information science, Parallel and Distributed Systems, ISPDS 2023
作者: Jiang, Chengjia Wang, Tao Li, Sien Wang, Jinyang Wang, Shirui Antoniou, Antonios Minjiang University Fujian Provincial Key Laboratory of Information Processing and Intelligent Control Fuzhou China Fujian Education Institutions Wuyi University The Key Laboratory of Cognitive Computing and Intelligent Information Processing Wuyishan China College of Computer and Data Science Fuzhou University Fuzhou China European University Cyprus Department of Computer Science and Engineering Nicosia Cyprus
We address the problem of learning new classes for semantic segmentation models from few examples, which is challenging because of the following two reasons. Firstly, it is difficult to learn from limited novel data t... 详细信息
来源: 评论