Most social networks allow connections amongst many people based on shared *** networks have to offer shared data like videos,photos with minimum latency to the group,which could be challenging as the storage cost has...
详细信息
Most social networks allow connections amongst many people based on shared *** networks have to offer shared data like videos,photos with minimum latency to the group,which could be challenging as the storage cost has to be minimized and hence entire data replication is not a *** replication of data across a network of read-intensive can potentially lead to increased savings in cost and energy and reduce the end-user’s response *** simple and adaptive replication strategies exist,the solution is non-deter-ministic;the replicas of the data need to be optimized to the data usability,perfor-mance,and stability of the application *** resolve the non-deterministic issue of replication,metaheuristics are *** this work,Harmony Search and Tabu Search algorithms are used optimizing the replication process.A novel Har-mony-Tabu search is proposed for effective placement and replication of *** on large datasets show the effectiveness of the proposed *** is seen that the bandwidth saving for proposed harmony-Tabu replication per-forms better in the range of 3.57%to 18.18%for varying number of cloud data-centers when compared to simple replication,Tabu replication and Harmony replication algorithm.
Backdoor attacks pose great threats to deep neural network models. All existing backdoor attacks are designed for unstructured data(image, voice, and text), but not structured tabular data, which has wide real-world a...
详细信息
Backdoor attacks pose great threats to deep neural network models. All existing backdoor attacks are designed for unstructured data(image, voice, and text), but not structured tabular data, which has wide real-world applications, e.g., recommendation systems, fraud detection, and click-through rate prediction. To bridge this research gap, we make the first attempt to design a backdoor attack framework, named BAD-FM, for tabular data prediction models. Unlike images or voice samples composed of homogeneous pixels or signals with continuous values, tabular data samples contain well-defined heterogeneous fields that are usually sparse and discrete. Tabular data prediction models do not solely rely on deep networks but combine shallow components(e.g., factorization machine, FM) with deep components to capture sophisticated feature interactions among fields. To tailor the backdoor attack framework to tabular data models, we carefully design field selection and trigger formation algorithms to intensify the influence of the trigger on the backdoored model. We evaluate BAD-FM with extensive experiments on four datasets, i.e.,HUAWEI, Criteo, Avazu, and KDD. The results show that BAD-FM can achieve an attack success rate as high as 100%at a poisoning ratio of 0.001%, outperforming baselines adapted from existing backdoor attacks against unstructured data models. As tabular data prediction models are widely adopted in finance and commerce, our work may raise alarms on the potential risks of these models and spur future research on defenses.
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received c...
详细信息
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received considerable attention in transmitting data and ensuring data confidentiality among cloud servers and users. Various traditional image retrieval techniques regarding security have developed in recent years but they do not apply to large-scale environments. This paper introduces a new approach called Triple network-based adaptive grey wolf (TN-AGW) to address these challenges. The TN-AGW framework combines the adaptability of the Grey Wolf Optimization (GWO) algorithm with the resilience of Triple Network (TN) to enhance image retrieval in cloud servers while maintaining robust security measures. By using adaptive mechanisms, TN-AGW dynamically adjusts its parameters to improve the efficiency of image retrieval processes, reducing latency and utilization of resources. However, the image retrieval process is efficiently performed by a triple network and the parameters employed in the network are optimized by Adaptive Grey Wolf (AGW) optimization. Imputation of missing values, Min–Max normalization, and Z-score standardization processes are used to preprocess the images. The image extraction process is undertaken by a modified convolutional neural network (MCNN) approach. Moreover, input images are taken from datasets such as the Landsat 8 dataset and the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset is employed for image retrieval. Further, the performance such as accuracy, precision, recall, specificity, F1-score, and false alarm rate (FAR) is evaluated, the value of accuracy reaches 98.1%, the precision of 97.2%, recall of 96.1%, and specificity of 917.2% respectively. Also, the convergence speed is enhanced in this TN-AGW approach. Therefore, the proposed TN-AGW approach achieves greater efficiency in image retrieving than other existing
Even though various features have been investigated in the detection of figurative language, oxymoron features have not been considered in the classification of sarcastic content. The main objective of this work is to...
详细信息
Protein structure prediction is one of the main research areas in the field of Bio-informatics. The importance of proteins in drug design attracts researchers for finding the accurate tertiary structure of the protein...
详细信息
Nowadays, Cloud Computing has attracted a lot of interest from both individual users and organization. However, cloud computing applications face certain security issues, such as data integrity, user privacy, and serv...
详细信息
In this paper, we delve into the transformative landscape of education amidst the disruptive advances of generative AI (GenAI), characterized by an unprecedented capacity to generate new information with tools such as...
详细信息
Security and privacy are major concerns in this modern world. Medical documentation of patient data needs to be transmitted between hospitals for medical experts opinions on critical cases which may cause threats to t...
详细信息
Security and privacy are major concerns in this modern world. Medical documentation of patient data needs to be transmitted between hospitals for medical experts opinions on critical cases which may cause threats to the data. Nowadays most of the hospitals use electronic methods to store and transmit data with basic security measures, but these methods are still vulnerable. There is no perfect solution that solves the security problems in any industry, especially healthcare. So, to cope with the arising need to increase the security of the data from being manipulated the proposed method uses a hybrid image encryption technique to hide the data in an image so it becomes difficult to sense the presence of data in the image while transmission. It combines Least Significant Bit (LSB) Algorithm using Arithmetic Division Operation along with Canny edge detection to embed the patient data in medical images. The image is subsequently encrypted using keys of six different chaotic maps sequentially to increase the integrity and robustness of the system. Finally, an encrypted image is converted into DNA sequence using DNA encoding rule to improve reliability. The experimentation is done on the Chest XRay image, Knee Magnetic Resonance Imaging (MRI) image, Neck MRI image, Lungs Computed Tomography (CT) Scan image datasets and patient medical data with 500 characters, 1000 characters and 1500 characters. And, it is evaluated based on time coefficient of encryption and decryption, histogram, entropy, similarity score (Mean Square Error), quality score (peak signal-to-noise ratio), motion activity index (number of changing pixel rate), unified average changing intensity, image similarity score (structure similarity index measurement) between original and encrypted images. Also, the proposed technique is compared with other recent state of arts methods for 500 characters embedding and performed better than those techniques. The proposed method is more stable and embeds comparativel
The performance of convolutional neural networks (CNN) for computer vision problems depends heavily on their architectures. Transfer learning performance of a CNN strongly relies on selection of its trainable layers. ...
详细信息
The behavior of users on online life service platforms like Meituan and Yelp often occurs within specific finegrained spatiotemporal contexts(i.e., when and where). Recommender systems, designed to serve millions of u...
详细信息
The behavior of users on online life service platforms like Meituan and Yelp often occurs within specific finegrained spatiotemporal contexts(i.e., when and where). Recommender systems, designed to serve millions of users, typically operate in a fully server-based manner, requiring on-device users to upload their behavioral data, including fine-grained spatiotemporal contexts, to the server, which has sparked public concern regarding privacy. Consequently, user devices only upload coarse-grained spatiotemporal contexts for user privacy protection. However, previous research mostly focuses on modeling fine-grained spatiotemporal contexts using knowledge graph convolutional models, which are not applicable to coarse-grained spatiotemporal contexts in privacy-constrained recommender systems. In this paper, we investigate privacy-preserving recommendation by leveraging coarse-grained spatiotemporal contexts. We propose the coarse-grained spatiotemporal knowledge graph for privacy-preserving recommendation(CSKG), which explicitly models spatiotemporal co-occurrences using common-sense knowledge from coarse-grained contexts. Specifically, we begin by constructing a spatiotemporal knowledge graph tailored to coarse-grained spatiotemporal contexts. Then we employ a learnable metagraph network that integrates common-sense information to filter and extract co-occurrences. CSKG evaluates the impact of coarsegrained spatiotemporal contexts on user behavior through the use of a knowledge graph convolutional network. Finally, we introduce joint learning to effectively learn representations. By conducting experiments on two real large-scale datasets,we achieve an average improvement of about 11.0% on two ranking metrics. The results clearly demonstrate that CSKG outperforms state-of-the-art baselines.
暂无评论