Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning ***,any metapaths consistin...
详细信息
Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning ***,any metapaths consisting of multiple,simple metarelations must be driven by domain *** sensitive,expensive,and limited metapaths severely reduce the flexibility and scalability of the existing models.A metapath-free,scalable representation learning model,called Metarelation2vec,is proposed for HNs with biased joint learning of all metarelations in a bid to address this ***,a metarelation-aware,biased walk strategy is first designed to obtain better training samples by using autogenerating cooperation probabilities for all metarelations rather than using expert-given ***,grouped nodes by the type,a common and shallow skip-gram model is used to separately learn structural proximity for each node ***,grouped links by the type,a novel and shallow model is used to separately learn the semantic proximity for each link ***,supervised by the cooperation probabilities of all meta-words,the biased training samples are thrown into the shallow models to jointly learn the structural and semantic information in the HNs,ensuring the accuracy and scalability of the *** experimental results on three tasks and four open datasets demonstrate the advantages of our proposed model.
Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs) is not only constitute an encouraging research domain but also represent a promising industrial trend that permits the development of various IoT-based ...
详细信息
ChatGPT, an advanced language model powered by artificial intelligence, has emerged as a transformative tool in the field of education. This article explores the potential of ChatGPT in revolutionizing learning and co...
详细信息
Human activity recognition is a crucial domain in computerscience and artificial intelligence that involves the Detection, Classification, and Prediction of human activities using sensor data such as accelerometers, ...
详细信息
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory,...
详细信息
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory, acceptable, and harmonious biometric recognition method with a promising national and social security future. The purpose of this paper is to improve the existing face recognition algorithm, investigate extensive data-driven face recognition methods, and propose a unique automated face recognition methodology based on generative adversarial networks (GANs) and the center symmetric multivariable local binary pattern (CS-MLBP). To begin, this paper employs the center symmetric multivariant local binary pattern (CS-MLBP) algorithm to extract the texture features of the face, addressing the issue that C2DPCA (column-based two-dimensional principle component analysis) does an excellent job of removing the global characteristics of the face but struggles to process the local features of the face under large samples. The extracted texture features are combined with the international features retrieved using C2DPCA to generate a multifeatured face. The proposed method, GAN-CS-MLBP, syndicates the power of GAN with the robustness of CS-MLBP, resulting in an accurate and efficient face recognition system. Deep learning algorithms, mainly neural networks, automatically extract discriminative properties from facial images. The learned features capture low-level information and high-level meanings, permitting the model to distinguish among dissimilar persons more successfully. To assess the proposed technique’s GAN-CS-MLBP performance, extensive experiments are performed on benchmark face recognition datasets such as LFW, YTF, and CASIA-WebFace. Giving to the findings, our method exceeds state-of-the-art facial recognition systems in terms of recognition accuracy and resilience. The proposed automatic face recognition system GAN-CS-MLBP provides a solid basis for a
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and *** address the limitations imposed by i...
详细信息
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and *** address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering *** various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time *** paper presents an approach based on state-of-the-art machine-learning *** this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data *** primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation *** evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop *** proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network.
A complicated neuro-developmental disorder called Autism Spectrum Disorder (ASD) is abnormal activities related to brain development. ASD generally affects the physical impression of the face as well as the growth of ...
详细信息
Purpose: The rapid spread of COVID-19 has resulted in significant harm and impacted tens of millions of people globally. In order to prevent the transmission of the virus, individuals often wear masks as a protective ...
详细信息
Image caption-generating systems aim to deliver accurate, coherent, and useful captions. This includes identifying the scene, items, relationships, and attributes of the image's objects. Due to constraints in usin...
详细信息
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation *** their trans...
详细信息
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation *** their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant *** challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy *** works often conflated safety issues with security *** contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of *** on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in ***,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats.
暂无评论