Purpose: The difficulty of diagnosing several lung disorders, including atelectasis, cardiomegaly, lung cancer, and COVID-19, is a challenging problem and needs to be addressed. These conditions exhibit some symptoms ...
详细信息
Purpose: The difficulty of diagnosing several lung disorders, including atelectasis, cardiomegaly, lung cancer, and COVID-19, is a challenging problem and needs to be addressed. These conditions exhibit some symptoms and demand advanced medical imaging process, thorough clinical assessments, and innovative procedures for accurate diagnosis. The shortage of qualified radiologists further makes the problem more complex to deal with. COVID-19 in particular has resulted in a remarkable number of fatalities around the world. Children below the age of 5 and individuals over 65 are more likely to be affected by lung disorders. It is very hard to diagnose and manage COVID-19 absolutely, but it can be identified earlier by employing computer-aided diagnosis (CAD) technologies to make timely diagnosis. Currently, radiologists adopt technologies, which are driven by artificial intelligence. By using them, medical imaging data, such as chest X-rays and CT scans, can be investigated to identify patterns to diagnose the severity of the virus. This expedites the diagnostic process and enhances accuracy, facilitating more timely and precise medical interventions. The efficiency of artificial intelligence in processing large datasets can directly help healthcare professionals in making diagnosis quicker and more accurate. The objective of the work in this paper is to design and implement deep learning model classifiers, which will effectively categorize the patterns found in the X-rays and CT scans. Methods: Three techniques for categorization are exploited to propose an entirely new hybrid convolutional neural network (CNN) model in this context. MRI and CT image categorization in the first classification method employ Fully Connected (FC) layers. The weights are calculated and tuned for training the algorithm over multiple periods to deliver the maximum precision for classification. The most accurate MRI and CT image characteristics are studied, and deep learning model classifiers
The earthquake early warning(EEW) system provides advance notice of potentially damaging ground shaking. In EEW, early estimation of magnitude is crucial for timely rescue operations. A set of thirty-four features is ...
详细信息
The earthquake early warning(EEW) system provides advance notice of potentially damaging ground shaking. In EEW, early estimation of magnitude is crucial for timely rescue operations. A set of thirty-four features is extracted using the primary wave earthquake precursor signal and site-specific *** Japan's earthquake magnitude dataset, there is a chance of a high imbalance concerning the earthquakes above strong impact. This imbalance causes a high prediction error while training advanced machine learning or deep learning models. In this work, Conditional Tabular Generative Adversarial Networks(CTGAN), a deep machine learning tool, is utilized to learn the characteristics of the first arrival of earthquake P-waves and generate a synthetic dataset based on this information. The result obtained using actual and mixed(synthetic and actual) datasets will be used for training the stacked ensemble magnitude prediction model, MagPred, designed specifically for this study. There are 13295, 3989, and1710 records designated for training, testing, and validation. The mean absolute error of the test dataset for single station magnitude detection using early three, four, and five seconds of P wave are 0.41, 0.40,and 0.38 MJMA. The study demonstrates that the Generative Adversarial Networks(GANs) can provide a good result for single-station magnitude prediction. The study can be effective where less seismic data is available. The study shows that the machine learning method yields better magnitude detection results compared with the several regression models. The multi-station magnitude prediction study has been conducted on prominent Osaka, Off Fukushima, and Kumamoto earthquakes. Furthermore, to validate the performance of the model, an inter-region study has been performed on the earthquakes of the India or Nepal region. The study demonstrates that GANs can discover effective magnitude estimation compared with non-GAN-based methods. This has a high potential for wid
Co-saliency detection within a single image is a common vision problem that has not yet been well addressed. Existing methods often used a bottom-up strategy to infer co-saliency in an image in which salient regions a...
详细信息
Co-saliency detection within a single image is a common vision problem that has not yet been well addressed. Existing methods often used a bottom-up strategy to infer co-saliency in an image in which salient regions are firstly detected using visual primitives such as color and shape and then grouped and merged into a co-saliency map. However, co-saliency is intrinsically perceived complexly with bottom-up and top-down strategies combined in human vision. To address this problem, this study proposes a novel end-toend trainable network comprising a backbone net and two branch nets. The backbone net uses ground-truth masks as top-down guidance for saliency prediction, whereas the two branch nets construct triplet proposals for regional feature mapping and clustering, which drives the network to be bottom-up sensitive to co-salient regions. We construct a new dataset of 2019 natural images with co-saliency in each image to evaluate the proposed method. Experimental results show that the proposed method achieves state-of-the-art accuracy with a running speed of 28 fps.
Research on neuromorphic computing is driven by the vision that we can emulate brain-like computing capability, learning capability, and energy-efficiency in novel hardware. Unfortunately, this vision has so far been ...
详细信息
Research on neuromorphic computing is driven by the vision that we can emulate brain-like computing capability, learning capability, and energy-efficiency in novel hardware. Unfortunately, this vision has so far been pursued in a half-hearted manner. Most current neuromorphic hardware (NMHW) employs brain-like spiking neurons instead of standard artificial neurons.
In the age of technology, many people have fallen victim to fake images. Photo editing has become easier as the process of making photos becomes more efficient. With the image processing tools at their disposal, peopl...
详细信息
As one of the most popular technologies nowadays, cloud computing has a big demand in the distributed software space. It is highly difficult for CSPs to work together in a multi-cloud context, and contemporary literat...
详细信息
Industrial cyber-physical systems closely integrate physical processes with cyberspace, enabling real-time exchange of various information about system dynamics, sensor outputs, and control decisions. The connection b...
详细信息
Industrial cyber-physical systems closely integrate physical processes with cyberspace, enabling real-time exchange of various information about system dynamics, sensor outputs, and control decisions. The connection between cyberspace and physical processes results in the exposure of industrial production information to unprecedented security risks. It is imperative to develop suitable strategies to ensure cyber security while meeting basic performance *** the perspective of control engineering, this review presents the most up-to-date results for privacy-preserving filtering,control, and optimization in industrial cyber-physical systems. Fashionable privacy-preserving strategies and mainstream evaluation metrics are first presented in a systematic manner for performance evaluation and engineering *** discussion discloses the impact of typical filtering algorithms on filtering performance, specifically for privacy-preserving Kalman filtering. Then, the latest development of industrial control is systematically investigated from consensus control of multi-agent systems, platoon control of autonomous vehicles as well as hierarchical control of power systems. The focus thereafter is on the latest privacy-preserving optimization algorithms in the framework of consensus and their applications in distributed economic dispatch issues and energy management of networked power systems. In the end, several topics for potential future research are highlighted.
With the rise of artificial intelligence and cloud computing, machine-learning-as-a-service platforms,such as Google, Amazon, and IBM, have emerged to provide sophisticated tasks for cloud applications. These propriet...
详细信息
With the rise of artificial intelligence and cloud computing, machine-learning-as-a-service platforms,such as Google, Amazon, and IBM, have emerged to provide sophisticated tasks for cloud applications. These proprietary models are vulnerable to model extraction attacks due to their commercial value. In this paper, we propose a time-efficient model extraction attack framework called Swift Theft that aims to steal the functionality of cloud-based deep neural network models. We distinguish Swift Theft from the existing works with a novel distribution estimation algorithm and reference model settings, finding the most informative query samples without querying the victim model. The selected query samples can be applied to various cloud models with a one-time selection. We evaluate our proposed method through extensive experiments on three victim models and six datasets, with up to 16 models for each dataset. Compared to the existing attacks, Swift Theft increases agreement(i.e., similarity) by 8% while consuming 98% less selecting time.
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memris...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity,replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained *** this study,we developed reconfigurable metal-oxide-semiconductor capacitors(MOSCaps)based on hafnium diselenide(HfSe2).The proposed devices exhibit(1)optoelectronic synaptic features and perform separate stimulus-associated learning,indicating considerable adaptive neuron emulation,(2)dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device,whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum,(3)memcapacitor volatility tuning based on the biasing conditions,enabling the transition from volatile light sensing to non-volatile optical data *** reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.
Identifying drug–target interactions (DTIs) is a critical step in both drug repositioning. The labor-intensive, time-consuming, and costly nature of classic DTI laboratory studies makes it imperative to create effici...
详细信息
暂无评论