As a pivotal enabler of intelligent transportation system(ITS), Internet of vehicles(Io V) has aroused extensive attention from academia and industry. The exponential growth of computation-intensive, latency-sensitive...
详细信息
As a pivotal enabler of intelligent transportation system(ITS), Internet of vehicles(Io V) has aroused extensive attention from academia and industry. The exponential growth of computation-intensive, latency-sensitive,and privacy-aware vehicular applications in Io V result in the transformation from cloud computing to edge computing,which enables tasks to be offloaded to edge nodes(ENs) closer to vehicles for efficient execution. In ITS environment,however, due to dynamic and stochastic computation offloading requests, it is challenging to efficiently orchestrate offloading decisions for application requirements. How to accomplish complex computation offloading of vehicles while ensuring data privacy remains challenging. In this paper, we propose an intelligent computation offloading with privacy protection scheme, named COPP. In particular, an Advanced Encryption Standard-based encryption method is utilized to implement privacy protection. Furthermore, an online offloading scheme is proposed to find optimal offloading policies. Finally, experimental results demonstrate that COPP significantly outperforms benchmark schemes in the performance of both delay and energy consumption.
Video portrait segmentation(VPS), aiming at segmenting prominent foreground portraits from video frames, has received much attention in recent years. However, the simplicity of existing VPS datasets leads to a limitat...
详细信息
Video portrait segmentation(VPS), aiming at segmenting prominent foreground portraits from video frames, has received much attention in recent years. However, the simplicity of existing VPS datasets leads to a limitation on extensive research of the task. In this work, we propose a new intricate large-scale multi-scene video portrait segmentation dataset MVPS consisting of 101 video clips in 7 scenario categories,in which 10843 sampled frames are finely annotated at the pixel level. The dataset has diverse scenes and complicated background environments, which is the most complex dataset in VPS to our best *** the observation of a large number of videos with portraits during dataset construction, we find that due to the joint structure of the human body, the motion of portraits is part-associated, which leads to the different parts being relatively independent in motion. That is, the motion of different parts of the portraits is imbalanced. Towards this imbalance, an intuitive and reasonable idea is that different motion states in portraits can be better exploited by decoupling the portraits into parts. To achieve this, we propose a part-decoupling network(PDNet) for VPS. Specifically, an inter-frame part-discriminated attention(IPDA)module is proposed which unsupervisedly segments portrait into parts and utilizes different attentiveness on discriminative features specified to each different part. In this way, appropriate attention can be imposed on portrait parts with imbalanced motion to extract part-discriminated correlations, so that the portraits can be segmented more accurately. Experimental results demonstrate that our method achieves leading performance with the comparison to state-of-the-art methods.
Process parameter configuration needs to respond quickly in the customized manufacturing environment. A multi-objective optimization method based on antlion algorithm for product process configuration design is propos...
详细信息
In increasingly complex air combat, machine learning method such as deep reinforcement learning (DRL) for air combat decision-making control has become a research hotspot. In order to prevent air combat agents from fa...
详细信息
In order to reduce the coupling between dense antenna arrays in multiple input multiple output (MIMO) systems, this paper proposes a method to reduce the coupling between microstrip antenna arrays by utilizing a defec...
详细信息
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces....
详细信息
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces. Large-scale data collection and annotation make the application of machine learning algorithms prohibitively expensive when adapting to new tasks. One way of circumventing this limitation is to train the model in a semi-supervised learning manner that utilizes a percentage of unlabeled data to reduce the labeling burden in prediction tasks. Despite their appeal, these models often assume that labeled and unlabeled data come from similar distributions, which leads to the domain shift problem caused by the presence of distribution gaps. To address these limitations, we propose herein a novel method for people-centric activity recognition,called domain generalization with semi-supervised learning(DGSSL), that effectively enhances the representation learning and domain alignment capabilities of a model. We first design a new autoregressive discriminator for adversarial training between unlabeled and labeled source domains, extracting domain-specific features to reduce the distribution gaps. Second, we introduce two reconstruction tasks to capture the task-specific features to avoid losing information related to representation learning while maintaining task-specific consistency. Finally, benefiting from the collaborative optimization of these two tasks, the model can accurately predict both the domain and category labels of the source domains for the classification task. We conduct extensive experiments on three real-world sensing datasets. The experimental results show that DGSSL surpasses the three state-of-the-art methods with better performance and generalization.
The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and e...
详细信息
The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.
A pivotal problem in the Internet of Things (IoT) is resource allocation, where the goal is to optimize allocation strategies of IoT resources. In general, resource allocation problems are formulated as constrained op...
详细信息
During short-range air combat involving unmanned aircraft vehicle(UAV) swarms, UAVs must make accurate maneuver decisions based on information from both enemy and friendly UAVs. This dual requirement of competition an...
详细信息
During short-range air combat involving unmanned aircraft vehicle(UAV) swarms, UAVs must make accurate maneuver decisions based on information from both enemy and friendly UAVs. This dual requirement of competition and cooperation presents a significant challenge in the field of unmanned air combat. In this paper, a method based on multi-agent reinforcement learning(MARL) is proposed to address this issue. An actor network containing three subnetworks that can handle different types of situational information is designed. Hence, the results from simpler one-on-one scenarios are leveraged to enhance the complex swarm air combat training process. Separate state spaces for local and global information are designed for the actor and critic networks. A detailed reward function is proposed to encourage *** prevent lazy participants in air combat, a reward assignment operation is applied to distribute these dense rewards. Simulation testing and ablation experiments demonstrate that both the transfer operation and reward assignment operation can effectively deal with the swarm air combat scenario, and reflect the effectiveness of the proposed method.
Machine learning has become important for anomaly detection in water quality prediction. Data anomalies are often caused by the difficulties of analysing large amounts of data, both technical and human, but approaches...
详细信息
暂无评论