Raman random fiber laser(RRFL) possesses rich physical properties of spectral, temporal, and spatial domains due to its unique feedback mechanism and complex nonlinear effects. Characterizing and controlling the micro...
详细信息
Raman random fiber laser(RRFL) possesses rich physical properties of spectral, temporal, and spatial domains due to its unique feedback mechanism and complex nonlinear effects. Characterizing and controlling the microscopic evolution dynamics of RRFL are crucial to driving breakthrough advances in fields such as inertial confinement fusion and fundamental physics. In this work, a novel experimental and theoretical analysis of the evolution of the temporal spectral correlations of the RRFL in the transition and steady states is conducted. In the transitional state, the microscopic dynamics of the RRFL excitation process is revealed comprehensively: the temporal-correlation growth curve contrasts with that of resonant-cavity lasers, and the formation and degradation of spectral correlation are observed. In the steady state, the overall spectrum is characterized by partial correlation, and the correlation characteristics of RRFL mainly originate from the spectral random spikes, which offers a novel dimension for the precise control of RRFL correlation. This work provides new insights into underlying physical properties of continuous broadband lasers, offering key guidance for laser design, control, and applications.
The future sixth-generation(6G) paradigm aims to seamlessly integrate communication and environmental sensing capabilities into a single radio signal, promising improved efficiency and cost-effectiveness through simul...
详细信息
The future sixth-generation(6G) paradigm aims to seamlessly integrate communication and environmental sensing capabilities into a single radio signal, promising improved efficiency and cost-effectiveness through simultaneous data communications and environmental perception. At the core of this evolution, orthogonal frequency division multiplexing(OFDM) and its advanced waveforms emerge as pivotal for integrated sensing and communications(ISAC). This study introduces a concise and unified ISAC waveform design framework based on orthogonal multicarriers. This framework supports versatile applications of OFDM and its derivative waveforms within a generalized ISAC system, marking a significant leap in integrating communication and sensing capabilities. A distinguishing feature of this framework is its adaptability,allowing users to intelligently select modulation strategies based on their specific environmental needs. This adaptability optimizes performance across diverse scenarios. Central to our innovations is the proposal of discrete Fourier transformspread OFDM with index modulation(DFT-S-OFDM-IM). This framework is paired with newly proposed signal processing methods for single-input single-output and multiple-input multiple-output(MIMO) systems. Extensive evaluations highlight DFT-S-OFDM-IM's superiority, including dramatically reduced peak-to-average power ratios(PAPRs), competitive communication performance, and exceptional sensing capabilities, striking an elegant balance between communication capacity and environmental sensing precision.
In order to support the optimal design of network information system, a modeling and timeliness evaluation method which can measure information transferring speed on kill chain of network information system is propose...
详细信息
The concept of biological gene is transferred to the field of command information system architecture, and the concept of command information system architecture gene is proposed. For networked and intelligent systems...
详细信息
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based *** these,multimodal learning-based classification methods have gained ...
详细信息
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based *** these,multimodal learning-based classification methods have gained attention due to their ability to leverage diverse feature sets from encrypted traffic,improving classification ***,existing research predominantly relies on late fusion techniques,which hinder the full utilization of deep features within the *** address this limitation,we propose a novel multimodal encrypted traffic classification model that synchronizes modality fusion with multiscale feature ***,our approach performs real-time fusion of modalities at each stage of feature extraction,enhancing feature representation at each level and preserving inter-level correlations for more effective *** continuous fusion strategy improves the model’s ability to detect subtle variations in encrypted traffic,while boosting its robustness and adaptability to evolving network *** results on two real-world encrypted traffic datasets demonstrate that our method achieves a classification accuracy of 98.23% and 97.63%,outperforming existing multimodal learning-based methods.
The problem of high-precision indoor positioning in the 5G era has attracted more and more attention.A fingerprint location method based on matrix completion(MC-FPL)is proposed for 5G ultradense networks to overcome t...
详细信息
The problem of high-precision indoor positioning in the 5G era has attracted more and more attention.A fingerprint location method based on matrix completion(MC-FPL)is proposed for 5G ultradense networks to overcome the high costs of traditional fingerprint database construction and matching ***,a partial fingerprint database constructed and the accelerated proximal gradient algorithm is used to fill the partial fingerprint database to construct a full fingerprint ***,a fingerprint database division method based on the strongest received signal strength indicator is proposed,which divides the original fingerprint database into several sub-fingerprint ***,a classification weighted K-nearest neighbor fingerprint matching algorithm is *** estimated coordinates of the point to be located can be obtained by fingerprint matching in a sub-fingerprint *** simulation results show that the MC-FPL algorithm can reduce the complexity of database construction and fingerprint matching and has higher positioning accuracy compared with the traditional fingerprint algorithm.
Emotion recognition using biological brain signals needs to be reliable to attain effective signal processing and feature extraction techniques. The impact of emotions in interpretations, conversations, and decision-m...
详细信息
Emotion recognition using biological brain signals needs to be reliable to attain effective signal processing and feature extraction techniques. The impact of emotions in interpretations, conversations, and decision-making, has made automatic emotion recognition and examination of a significant feature in the field of psychiatric disease treatment and cure. The problem arises from the limited spatial resolution of EEG recorders. Predetermined quantities of electroencephalography (EEG) channels are used by existing algorithms, which combine several methods to extract significant data. The major intention of this study was to focus on enhancing the efficiency of recognizing emotions using signals from the brain through an experimental, adaptive selective channel selection approach that recognizes that brain function shows distinctive behaviors that vary from one individual to another individual and from one state of emotions to another. We apply a Bernoulli–Laplace-based Bayesian model to map each emotion from the scalp senses to brain sources to resolve this issue of emotion mapping. The standard low-resolution electromagnetic tomography (sLORETA) technique is employed to instantiate the source signals. We employed a progressive graph convolutional neural network (PG-CNN) to identify the sources of the suggested localization model and the emotional EEG as the main graph nodes. In this study, the proposed framework uses a PG-CNN adjacency matrix to express the connectivity between the EEG source signals and the matrix. Research on an EEG dataset of parents of an ASD (autism spectrum disorder) child has been utilized to investigate the ways of parenting of the child's mother and father. We engage with identifying the personality of parental behaviors when regulating the child and supervising his or her daily activities. These recorded datasets incorporated by the proposed method identify five emotions from brain source modeling, which significantly improves the accurac
The video grounding(VG) task aims to locate the queried action or event in an untrimmed video based on rich linguistic descriptions. Existing proposal-free methods are trapped in the complex interaction between video ...
详细信息
The video grounding(VG) task aims to locate the queried action or event in an untrimmed video based on rich linguistic descriptions. Existing proposal-free methods are trapped in the complex interaction between video and query, overemphasizing cross-modal feature fusion and feature correlation for VG. In this paper, we propose a novel boundary regression paradigm that performs regression token learning in a transformer. Particularly, we present a simple but effective proposal-free framework, namely video grounding transformer(ViGT), which predicts the temporal boundary using a learnable regression token rather than multi-modal or cross-modal features. In ViGT, the benefits of a learnable token are manifested as follows.(1) The token is unrelated to the video or the query and avoids data bias toward the original video and query.(2) The token simultaneously performs global context aggregation from video and query ***, we employed a sharing feature encoder to project both video and query into a joint feature space before performing cross-modal co-attention(i.e., video-to-query attention and query-to-video attention) to highlight discriminative features in each modality. Furthermore, we concatenated a learnable regression token [REG] with the video and query features as the input of a vision-language transformer. Finally, we utilized the token [REG] to predict the target moment and visual features to constrain the foreground and background probabilities at each timestamp. The proposed ViGT performed well on three public datasets:ANet-Captions, TACoS, and YouCookⅡ. Extensive ablation studies and qualitative analysis further validated the interpretability of ViGT.
With the development of deep learning in recent years, code representation learning techniques have become the foundation of many software engineering tasks such as program classification [1] and defect detection. Ear...
With the development of deep learning in recent years, code representation learning techniques have become the foundation of many software engineering tasks such as program classification [1] and defect detection. Earlier approaches treat the code as token sequences and use CNN, RNN, and the Transformer models to learn code representations.
As wafer circuit width shrinks down to less than ten nanometers in recent years,stringent quality control in the wafer manufacturing process is increasingly *** to the coupling of neighboring cluster tools and coordin...
详细信息
As wafer circuit width shrinks down to less than ten nanometers in recent years,stringent quality control in the wafer manufacturing process is increasingly *** to the coupling of neighboring cluster tools and coordination of multiple robots in a multi-cluster tool,wafer production scheduling becomes rather *** a wafer is processed,due to high-temperature chemical reactions in a chamber,the robot should be controlled to take it out of the processing chamber at the right *** order to ensure the uniformity of integrated circuits on wafers,it is highly desirable to make the differences in wafer post-processing time among the individual tools in a multicluster tool as small as *** achieve this goal,for the first time,this work aims to find an optimal schedule for a dual-arm multi-cluster tool to regulate the wafer post-processing *** do so,we propose polynomial-time algorithms to find an optimal schedule,which can achieve the highest throughput,and minimize the total post-processing time of the processing *** propose a linear program model and another algorithm to balance the differences in the post-processing time between any pair of adjacent cluster *** industrial examples are given to illustrate the application and effectiveness of the proposed method.
暂无评论