The military services are being moved in the direction of performance-based specifications and standards. They are being steered against dictating ''how to'' produce an item since such action foreclose...
The military services are being moved in the direction of performance-based specifications and standards. They are being steered against dictating ''how to'' produce an item since such action forecloses on the ability to gain access to components or technology that may have a commercial equivalent. Why should the engineering community embrace the new approach? Aside from the obvious weight of it being approved policy, therefore currently mandated, it warrants examination because it is the correct approach at this time when applied to appropriate products. Military specifications and standards are to be displaced then, by acceptable alternative contractor design solutions. Industry bidders will be allowed to propose the particular design details, permitting procurement flexibility by contractually citing only system level or interface requirements, both physical and functional. Hopefully, this can broaden the industrial base and increase competition with reduced costs to follow. Conceptually, the approach appears both performance-sensible and cost-attractive (there are, of course, consequent risks) but how does implementation proceed? Is it possible to pursue the goals envisioned along paths that are not in themselves experimental? Can the American postulate, minimal loss of life and limb to U.S. military people, continue to be honored? Experience and track record elsewhere imply encouraging possibilities in select situations-useful prospects are identified and discussed in practical terms.
作者:
TUCK, EFPATTERSON, DPSTUART, JRLAWRENCE, MHCalling Communications Corporation. 1900 West Garvey Ave
South. Suite 200 West Covina CA 91790 USA. Chairman of Calling Communications Corporation. He is also the Managing Director of Kinship Venture Management
Inc. the general partner of Kinship Partners 11 and a General Partner of Boundary the general partner of The Boundary Fund. As a venture capitalist he has founded or participated in founding several telecommunications companies including Calling Communications Corporation Magellan Systems Corporation
manufactures of Global Positioning System receivers Applied Digital Access
manufacturer of DS-3 test access and network performance monitoring equipment Endgate Technology Corporation
specialists in satellite phased array antennas and Poynting Systems Corporation. now a division of Reliance Corporation
manufacturers of fibre optic transport equipment. He was a founder of Kebby Microwave Corporation where he invented the first solid-state. frequency-modulated commercial microwave link system. The company was acquired by ITT Corporation where he rose to the position of V.P. and Technical Director of ITT North America Telecommunications Inc. Subsequently he was V.P. of Marketing and Engineering at American Telecommunications Inc. (ATC). He was founding Director of American Telecom Inc. a joint venture between ATC and Fujitsu and has served on more than 20 boards of directors including those of three public companies. He has authored articles on microwave engineering and telephone signalling and was a contributor to Reference Data For Radio Engineers. He is a graduate of the University of Missouri at Rolla where he was later awarded an honorary Professional degree and serves on its Academy of Electrical Engineering. Mr Tuck is a Senior Member of the IEEE a Fellow of the Institution of Engineers (Australia) a Professional Member of the AIAA and a registered professional engineer in three states. More than 25 years of experience in the telecommunications industry where he has been responsibl
There is a very large demand for basic telephone service in developing nations, and remote parts of industrialized nations, which cannot be met by conventional wireline and cellular systems. This is the world's la...
详细信息
There is a very large demand for basic telephone service in developing nations, and remote parts of industrialized nations, which cannot be met by conventional wireline and cellular systems. This is the world's largest unserved market. We describe a system which uses recent advances in active phased arrays, fast-packet switching technology, adaptive routeing, and light spacecraft technology, in part based on the work of the Jet Propulsion laboratory and on recently-declassified work done on the Strategic Defense Initiative, to make it possible to address this market with a global telephone network based on a large low-Earth-orbit constellation of identical satellites. A telephone utility can use such a network to provide the same modern basic and enhanced telephone services offered by telephone utilities in the urban centres of fully-industrialized nations. Economies of scale permit capital and operating costs per subscriber low enough to provide a service to all subscribers, regardless of location, at prices comparable to the same services in urban areas of industrialized nations, while generating operating profits great enough to attract the capital needed for its construction. The bandwidth needed to support the capacity needed to gain these economies of scale requires that the system use K(alpha)-band frequencies. This choice of frequencies places unusual constraints on the network design, and in particular forces the use of a large number of satellites. Global demand for basic and enhanced telephone service is great enough to support at least three networks of the size described herein. The volume of advanced components, and services such as launch services, required to construct and replace these networks is sufficient to propel certain industries to market leadership positions in the early 21st Century.
作者:
LEVEDAHL, WJThe Author:is the assistant for technology in the Machinery Research and Development Dictorate of the Naval Surface Warfare Center
Carderock Division Annapolis Md. After a 50-mission tour as a P-51 Mustang pilot he received a B.S. in general engineering from MIT and was elected to Sigma Xi. He subsequently studied gas turbines and aeronautical engineering at the Federal Polytechnic Institute in Zurich Switzerland and as a National Science Foundation fellow he received his Doktor Ingenieur at the Technical University of Aachen Germany. He conducted basic research in combustion at the National Bureau of Standards and was head of advanced core design at the Knolls Atomic Power Laboratory (General Electric) during the 1950s when the currently used reactor cores were designed. He then joined Combustion Engineering as chief project physicist in the design of central-station reactors. Subsequently he became manager of research at Martin Marietta involved largely in direct energy conversion for outer space. In 1970 he joined the Annapolis Laboratory to establish the Superconductive Electric Propulsion Program and in 1974 assumed his present position. He has received the Distinguished Flying Cross the Meritorious Civilian Service Award 10 patents and is the author of many technical papers.
A simple tumblehome hull of 4500LT lightship displacement carries 1200LT of military payload 6000NMi at 20kts with inherently-low acoustic, infrared, and radar signatures, and with superior seakeeping, without seawate...
A simple tumblehome hull of 4500LT lightship displacement carries 1200LT of military payload 6000NMi at 20kts with inherently-low acoustic, infrared, and radar signatures, and with superior seakeeping, without seawater ballast. Its two intercooled, recuperated turbines replace the seven simple-cycle engines of a comparably-armed conventional destroyer and consume 59% less fuel;both ships share a 30kt sustained speed at 80% power. Use of stern flaps permits carrving more fuel;range is doubled to 12,000 NMi. Two removable, prealigned and pretested steerable propulsor modules are attached to the stern after construction and are pierside replaceable without drydocking;each includes a steerable pod aligned to the water inflow. Contrarotating tractor propellers are driven by a pretested integrated capsule which comprises seals, thrust bearings, contrarotating ringring bicoupled epicyclic gears, and an alternating-current electric motor. A streamlined strut connects each pod rigidlv to a vertical steerable barrel which contains the individually-replaceable propulsor auxiliaries. Two power modules are removable and are mounted in the helicopter hangar. Each module comprises a 26,400 HP intercooled regenerated gas turbine, a 3 Mw ship-service generator, and a propulsion generator with a second high-voltage winding for electrothermal guns.
作者:
NARAYANAN, VMANELA, MLADE, RKSARKAR, TKDepartment of Electrical and Computer Engineering
Syracuse University Syracuse New York 13244-1240 Viswanathan Narayanan was born in Bangalore
India on December 14 1965. He received the BE degree in Electronics and Communications from B.M.S. College of Engineering Bangalore in 1988. He joined the Department of Electrical Engineering at Syracuse University for his graduate studies in 1989 where he is currently a research assistant. His research interests are in microwave measurements numerical electromagnetics and signal processing. Biographies and photos are not available for M. Manela and R. K. Lade.Tapan K. Sarkar (Sf69-M'76-SM'X1) was born in Calcutta. India
on August 2 1948. He received the BTech degree from the Indian Institute of Technology Kharagpur India in 1969 the MScE degree from the University of New Brunswick Fredericton Canada in 1971. and the MS and PhD degrees from Syracuse University. Syracuse NY in 1975. From 1975-1976 he was with the TACO Division of the General Instruments Corporation. He was with the Rochester Institute of Technology (Rochester NY) from 1976-1985. He was a Research Fellow at the Gordon Mckay Laboratory Harvard University Cambridge MA from 1977 to 1978. He is now a Professor in the Department of Electrical and Computer Engineering Syracuse University. His current research interests deal with numerical solutions of operator equations arising in electromagnetics and signal processing with application to system design. He obtained one of the “ best solution” awards in May 1977 at the Rome Air Development Center (RADC) Spectral Estimation Workshop. He has authored or coauthored more than 154 journal articles and conference papers and has written chapters in eight books. Dr. Sarkar is a registered professional engineer in the state of New York. He received the Best Paper Award of the IEEE Transactions on Electromagnetic Compatibility in 1979. He was an Associate Editor for feature articles of the lEEE Antennas arid Propagation Sociefy Newsletter and was
Dynamic analysis of waveguide structures containing dielectric and metal strips is presented. The analysis utilizes a finite difference frequency domain procedure to reduce the problem to a symmetric matrix eigenvalue...
详细信息
Dynamic analysis of waveguide structures containing dielectric and metal strips is presented. The analysis utilizes a finite difference frequency domain procedure to reduce the problem to a symmetric matrix eigenvalue problem. Since the matrix is also sparse, the eigenvalue problem can be solved quickly and efficiently using the conjugate gradient method resulting in considerable savings in computer storage and time. Comparison is made with the analytical solution for the loaded dielectric waveguide case. For the microstrip case, we get both waveguide modes and quasi-TEM modes. The quasi-TEM modes in the limit of zero frequency are checked with the static analysis which also uses finite difference. Some of the quasi-TEM modes are spurious. This article describes their origin and discusses how to eliminate them. Numerical results are presented to illustrate the principles.
作者:
KING, JFBARTON, DEJ. Fred King:is the manager of the Advanced Technology Department for Unisys in Reston
Virginia. He earned his Ph.D. in mathematics from the University of Houston in 1977. He has been principal investigator of research projects in knowledge engineering pattern recognition and heuristic problem-solving. Efforts include the development of a multi-temporal multispectral classifier for identifying graincrops using LANDSAT satellite imagery data for NASA. Also as a member of the research team for a NCI study with Baylor College of Medicine and NASA he helped develop techniques for detection of carcinoma using multispectral microphotometer scans of lung tissue. He established and became technical director of the AI Laboratory for Ford Aerospace where he developed expert scheduling modeling and knowledge acquisition systems for NASA. Since joining Unisys in 1985 he has led the development of object-oriented programming environments blackboard architectures data fusion techniques using neural networks and intelligent data base systems. Douglas E. Barton:is manager of Logistics Information Systems for Unisys in Reston
Virginia. He earned his B.A. degree in computer science from the College of William and Mary in 1978 and did postgraduate work in London as a Drapers Company scholar. Since joining Unisys in 1981 his work has concentrated on program management and software engineering of large scale data base management systems and design and implementation of knowledge-based systems in planning and logistics. As chairman of the Logistics Data Subcommittee of the National Security Industrial Association (NSIA) he led an industry initiative which examined concepts in knowledge-based systems in military logistics. His responsibilities also include evaluation development and tailoring of software engineering standards and procedures for data base and knowledge-based systems. He is currently program manager of the Navigation Information Management System which provides support to the Fleet Ballistic Missile Progr
A valuable technique during concept development is rapid prototyping of software for key design components. This approach is particularly useful when the optimum design approach is not readily apparent or several know...
详细信息
A valuable technique during concept development is rapid prototyping of software for key design components. This approach is particularly useful when the optimum design approach is not readily apparent or several known alternatives need to be rapidly evaluated. A problem inherent in rapid prototyping is the lack of a "target system" with which to interface. Some alternatives are to develop test driver libraries, integrate the prototype with an existing working simulator, or build one for the specific problem. This paper presents a unique approach to concept development using rapid prototyping for concept development and scenario-based simulation for concept verification. The rapid prototyping environment, derived from artificial intelligence technology, is based on a blackboard architecture. The rapid prototype simulation capability is provided through an object-oriented modeling environment. It is shown how both simulation and blackboard technologies are used collectively to rapidly gain insight into a tenacious problem. A specific example will be discussed where this approach was used to evolve the logic of a mission controller for an autonomous underwater vehicle.
作者:
SWALLOM, DWSADOVNIK, IGIBBS, JSGUROL, HNGUYEN, LVVANDENBERGH, HHDaniel W. Swallomis the director of military power systems at Avco Research Laboratory
Inc. a subsidiary of Textron Inc. in Everett Mass. Dr. Swallom received his B.S. M.S. and Ph.D. degrees in mechanical engineering from the University of Iowa Iowa City Iowa in 1969 1970 and 1972 respectively. He has authored numerous papers in the areas of power propulsion and plasma physics and currently is a member of the Aerospace Power Systems Technical Committee of the AIAA. Dr. Swallom has directed various programs for the development of advanced power generation systems lightweight power conditioning systems and advanced propulsion systems for marine applications. His previous experience includes work with Odin International Corporation Maxwell Laboratories Inc. Argonne National Laboratory and the Air Force Aero Propulsion Laboratory. Currently Dr. Swallom is directing the technical efforts to apply magnetohydrodynamic principles to a variety of propulsion and power applications for various marine vehicles and power system requirements respectively. Isaac Sadovnikis a principal research engineer in the Energy Technology Office at Avco Research Laboratory
Inc. a subsidiary of Textron Inc. He received his B.S. in engineering (1974) B.S. in physics (1975) M.S. in aeronautics and astronautics (1976) and Ph.D. in physics of fluids (1981) at the Massachusetts Institute of Technology. Dr. Sadovnik has been involved in research work funded by DARPA concerning the use of magnetohydrodynamics for underwater propulsion. He has built theoretical models that predict the hydrodynamic behavior of seawater flow through magnetohydrodynamic ducts and their interaction with the rest of the vehicle (thrust and drag produced). In addition Dr. Sadovnik has been involved in research investigations geared toward the NASP program concerning the use of magnetohydrodynamic combustion-driven accelerator channels. Prior to joining Avco Dr. Sadovnik was a research assistant at MIT where he conducted experimental and
Magnetohydrodynamic propulsion systems for submarines offer several significant advantages over conventional propeller propulsion systems. These advantages include the potential for greater stealth characteristics, in...
详细信息
Magnetohydrodynamic propulsion systems for submarines offer several significant advantages over conventional propeller propulsion systems. These advantages include the potential for greater stealth characteristics, increased maneuverability, enhanced survivability, elimination of cavitation limits, greater payload capability, and the addition of a significant emergency propulsion system. These advantages can be obtained with a magnetohydrodynamic propulsion system that is neutrally bouyant and can operate with the existing submarine propulsion system power plant. A thorough investigation of magnetohydrodynamic propulsion systems for submarine applications has been completed. During the investigation, a number of geometric configurations were examined. Each of these configurations and mounting concepts was optimized for maximum performance for a generic attack class submarine. The optimization considered each thruster individually by determining the optimum operating characteristics for each one and accepting only those thrusters that result in a neutrally buoyant propulsion system. The results of this detailed optimization study show that the segmented, annular thruster is the concept with the highest performance levels and greatest efficiency and offers the greatest potential for a practical magnetohydrodynamic propulsion system for attack class submarines. The optimization study results were used to develop a specific point design for a segmented, annular magnetohydrodynamic thruster for an attack class submarine. The design point case has shown that this thruster may be able to provide the necessary thrust to propel an attack class submarine at the required velocity with the potential for a substantial acoustic signature reduction within the constraints of the existing submarine power plant and the maintenance of neutral buoyancy. This innovative magnetohydrodynamic propulsion system offers an approach for submarine propulsion that can be an important contributio
作者:
ZITZMAN, LHFALATKO, SMPAPACH, JLDr. Lewis H. Zitzman:is the group supervisor of the Advanced Systems Design Group
Fleet Systems Department The Johns Hopkins University Applied Physics Laboratory (JHU/APL). He has been employed at JHU/APL since 1972 performing applied research in computer science and in investigating and applying advanced computer technologies to Navy shipboard systems. He is currently chairman of Aegis Computer Architecture Data Bus and Fiber Optics Working Group from which many concepts for this paper were generated. Dr. Zitzman received his B.S. degree in physics from Brigham Young University in 1963 and his M.S. and Ph.D. degrees in physics from the University of Illinois in 1967 and 1972 respectively. Stephen M. Falatko:was a senior engineering analyst in the Combat Systems Engineering Department
Comptek Research Incorporated for the majority of this effort. He is currently employed at ManTech Services Corporation. During his eight-year career first at The Johns Hopkins University Applied Physics Laboratory and currently with ManTech Mr. Falatko's work has centered around the development of requirements and specifications for future Navy systems and the application of advanced technology to Navy command and control systems. He is a member of both the Computer Architecture Fiber Optics and Data Bus Working Group and the Aegis Fiber Optics Working Group. Mr. Falatko received his B.S. degree in aerospace engineering with high distinction from the University of Virginia in 1982 and his M.S. degree in applied physics from The Johns Hopkins University in 1985. Mr. Falatko is a member of Tau Beta Pi Sigma Gamma Tau the American Society of Naval Engineers and the U.S. Naval Institute. Janet L. Papach:is a section leader and senior engineering analyst in the Combat Systems Engineering Department
Comptek Research Incorporated. She has ten years' experience as an analyst supporting NavSea Spa War and the U.S. Department of State. She currently participates in working group efforts under Aegis Combat System Doctrin
This paper sets forth computer systems architecture concepts for the combat system of the 2010–2030 timeframe that satisfy the needs of the next generation of surface combatants. It builds upon the current Aegis comp...
详细信息
This paper sets forth computer systems architecture concepts for the combat system of the 2010–2030 timeframe that satisfy the needs of the next generation of surface combatants. It builds upon the current Aegis computer systems architecture, expanding that architecture while preserving, and adhering to, the Aegis fundamental principle of thorough systems engineering, dedicated to maintaining a well integrated, highly reliable, and easily operable combat system. The implementation of these proposed computer systems concepts in a coherent architecture would support the future battle force capable combat system and allow the expansion necessary to accommodate evolutionary changes in both the threat environment and the technology then available to effectively counter that threat. Changes to the current Aegis computer architecture must be carefully and effectively managed such that the fleet will retain its combat readiness capability at all times. This paper describes a possible transition approach for evolving the current Aegis computer architecture to a general architecture for the future. The proposed computer systems architecture concepts encompass the use of combinations of physically distributed, microprocessor-based computers, collocated with the equipment they support or embedded within the equipment itself. They draw heavily on widely used and available industry standards, including instruction set architectures (ISAs), backplane busses, microprocessors, computer programming languages and development environments, and local area networks (LANs). In this proposal, LANs, based on fiber optics, will provide the interconnection to support system expandability, redundancy, and higher data throughput rates. A system of cross connected LANs will support a high level of combat system integration, spanning the major warfare areas, and will facilitate the coordination and development of a coherent multi-warfare tactical picture supporting the future combatant command st
作者:
LEVEDAHL, WJThe author:is the assistant for technology in the Propulsion and Auxiliary Systems Department of the David Taylor Research Center (DTRC)
Annapolis Md. After a World War II combat tour as a 15th AAF P-51 fighter pilot he received a B.S. in general engineering from MIT and was elected to Sigma Xi. He subsequently studied gas turbines and aeronautical engineering at ETH in Zurich and as a National Science Foundation Fellow he received his Doktor Ingenieur in applied thermodynamics at the TH Aachen Germany. He conducted basic research in combustion at the National Bureau of Standards and was head of advanced submarine reactor core design at the Knolls Atomic Power Laboratory (General Electric) during the 1950s. He then joined Combustion Engineering as chief project physicist in the design of central-station reactors. Subsequently he become manager of research at Martin Marietta involved largely in direct energy conversion for outer space. In 1970 he joined DTRC to establish the Superconductive Electric Propulsion Program and in 1974 assumed his present position. He has received the Distinguished Flying Cross and the Meritorious Civilian Service Award. Dr. Levedahl joined ASNE in 1978.
In the late 1980s, the world of U.S. Navy surface combatants is confronted with three new needs: to reduce ship signatures by factors of 10 to 1000; to provide ten-gigawatt power pulses to new combat systems; and to r...
详细信息
In the late 1980s, the world of U.S. Navy surface combatants is confronted with three new needs: to reduce ship signatures by factors of 10 to 1000; to provide ten-gigawatt power pulses to new combat systems; and to reduce the high cost of hull, mechanical and electrical (HM&E) systems by taking advantage of newly-available technology. These needs have caused an active response of the surface-ship community to the many apparent benefits of integrated machinery systems. The acoustic signature problem accelerated interest in integrated machinery systems. A substantial reduction in noise at cruise speeds requires the elimination of propeller cavitation and requires reductions in machinery noise. The use of contrarotating tractor propellers driven by bicoupled epicyclic gears and an alternating-current electric motor in a pod which faces directly into the flow stream is potentially capable of such performance; even better would be a contrarotating superconductive electric motor in the pod. No other concept seems even remotely competitive with these. The major reductions in installed power, fuel consumption, and reduced displacement reported in the April 1980 Naval Engineers Journal are retained. Large reductions in infrared signature and further reductions in fuel consumption are provided by intercooled recuperated gas turbines. An integrated electric propulsion system provides the opportunity to temporarily “borrow” power from the propulsion system and transform it into pulses for advanced combat systems. Not only the power of the turbines, but also the kinetic energy of the ship are available.
This paper describes a computer integrated engineering system for design and life cycle management of weapons systems, ships and other multidisciplined systems. All engineering data are stored in a central engineering...
详细信息
This paper describes a computer integrated engineering system for design and life cycle management of weapons systems, ships and other multidisciplined systems. All engineering data are stored in a central engineering database. Individual application databases define and process information necessary for specific discipline evaluations. Interface modules between the application databases and the engineering database ensure that the entered data are complete, consistent, compatible, and in compliance with requirements. Conflicts are immediately identified and efficiently resolved. Implementation of the system improves design quality and reduces costs by minimizing the number of design iterations, reducing the effort to implement changes, providing effective storage and retrieval, and reducing the need for ship checks prior to modifications and alterations.
A turning point occurred in naval engineering in 1972 when the U.S. N avy chose to use marine gas turbines for the propulsion of its new SPRUANCE and PERRY Class ships. This paper reviews the more than twenty years of...
A turning point occurred in naval engineering in 1972 when the U.S. N avy chose to use marine gas turbines for the propulsion of its new SPRUANCE and PERRY Class ships. This paper reviews the more than twenty years of experience with turbine technology and its design integration into combat ships needed to make that decision. It is concluded that the availability of a good second generation aircraft derivative engine with proven reliability and a strong commercial base, i.e., the LM-2500, was as important to the decision as was the predicted improved ship effectiveness and cost benefits. This paper discusses improvements that can be made to the twin engine, single gear, single propeller shaft system. Focusing only on this mechanical transmission concept, it addresses the impact of possible improvements to the engine, gear, and shafting. In particular, the paper discusses current LM-2500 related R&D efforts to: (a) obtain improved part-power fuel rates, (b) integrate with a reversing reduction gear, and (c) add on a waste heat recovery steam cycle. Looking ahead to the year 2000, this paper suggests that a successor to the ubiquitous LM-2500 will appear in the 15 MW power range to provide the next step in the evolution of the twin engine package. This new naval engine will most likely be based on an aircraft core that exists at present, such that it will have demonstrated its reliability and commercial potential through many hours of testing prior to its mid-1990 marine conversion. This new engine is expected to offer improved air flow, an excellent fuel rate (approaching a flat 0.30 LB/HP-HR), and effective maintenance monitoring, all at some expense in size, weight, and cost. The year 2000 engine will burn a liquid hydrocarbon fuel similar to JP-5 because of its aircraft origins. Combined with advances in gear and shafting technology, the full twin engine propulsion system of the year 2000 should be markedly lighter, smaller, and more efficient than today's units.
暂无评论